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ABSTRACT
Huge amounts of data with both spatial and temporal information
(e.g., geo-tagged tweets) are being generated, and are often used to
share and spread personal updates, spontaneous ideas, and breaking
news. We refer to such data as spatio-temporal documents. It is of
great interest to explore topics in a collection of spatio-temporal
documents.

In this paper, we study the problem of efficiently mining topics
from spatio-temporal documents within a user specified bounded
region and timespan, to provide users with insights about events,
trends, and public concerns within the specified region and time
period. We propose a novel algorithm that is able to efficiently
combine two pre-trained topic models learnt from two document
sets with a bounded error, based on which we develop an efficient
approach to mining topics from a large number of spatio-temporal
documents within a region and a timespan. Our experimental re-
sults show that our approach is able to improve the runtime by at
least an order of magnitude compared with the baselines. Mean-
while, the effectiveness of our proposed method is close to the base-
lines.

1. INTRODUCTION
With the rapid development of online social media (e.g., Face-

book, Flickr, Twitter, etc.) and GPS-enabled devices, huge amounts
of data with both spatial and temporal information are being gen-
erated in an unprecedented scale. For example, Twitter, which
allows users to compose tweets, has 320 million monthly active
users who posted 500 million tweets per day, where 80% of the
active users are on mobile1. Tweets are timestamped and they can
be geo-tagged by enabling the geo-tagging functionality. Tweets
are regarded as an up-to-date news source [6] and they have been
analyzed for various types of human activity including execution
of political actions, disaster management, crime prevention, emer-
gency services, etc [17]. Such data can be regarded as a collection
of spatio-temporal documents.

Since the spatio-temporal documents often contain information

1https://about.twitter.com/company (accessed date: Feb 9th, 2016)
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that is indicative of public views and interests [19, 12], it is of great
interest to mine topics from the spatio-temporal document collec-
tions. Several studies of Online Analytical Processing (OLAP) aim
at mining topics from text data (e.g., [32, 34]). Topic models,
such as Probabilistic Latent Semantic Analysis (pLSA) [8], Latent
Dirichlet Allocation (LDA) [4] and their variations, are proposed as
one of the most effective text mining techniques and they have been
successfully used for extracting topics from documents. In topic
models, a document has a mixture of topics (e.g., “sport games”,
“entertainments”, etc.) and each topic is modeled by a probabilis-
tic distribution over a set of words (e.g., “football”, “shoot”, etc.,
for topic “sport games”).

However, existing studies often neglect the fact that the location
and created time of a document also play important roles in topic
extraction. For example, a Twitter user in Boston may be interested
in entirely different matters and news compared to a user in Hong
Kong. Also, the trending topics in Boston will be different from
those in U.S.A., as the trending topics in Boston may have more
regional characteristics (e.g., “Boston Marathon”). Moreover, top-
ics in June 2015 are substantially different from those in May 2015
(e.g., the emerging topic about the disease “MERS”). By finding
topics in a region and a time period, many applications can be ac-
complished. For example, social scientists can find topics in differ-
ent regions and time periods, and news providers can find breaking
events from tweets within a region and a time period.

In this paper, we propose to mine topics from a collection of
spatio-temporal documents within any user specified spatial region
and time interval, which is to provide users with insights about
events, trends, and public concerns within the specified region and
time period.

Figure 1 exemplifies the problem of mining topics, where a user
draws a bounded region (which is represented by the purple box
on the map) and a time interval, July 4th, 2015. The blue icons
indicate the spatio-temporal documents (e.g., tweets or news) con-
taining text, location, and time information. The three topics ex-
tracted from the collection of spatial-temporal documents falling in
the region on July 4th, 2015 are presented on the right. Since each
topic in topic models is characterized by a probabilistic distribution
over words, we use “Word Clouds” to visualize each topic. Word
clouds use larger font to represent higher probability of a word in
the topic. Note that for each topic we only show several words with
the highest probabilities.

It is challenging to mine topics within a given region and a times-
pan efficiently and effectively. A straightforward method works as
follows: Given a user specified region and timespan, we train a
topic model on the documents falling in the region and the timespan
using the existing techniques, such as LDA [4]. However, mining
topics from spatio-temporal documents is very time-consuming.
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Figure 1: Topics within a Bounded Region and a Time Interval

The original problem of training topic models is NP-hard and col-
lapsed Gibbs sampling is often used to approximately estimate the
probabilistic distribution over words for each topic. However, the
complexity of colllapsed Gibbs Sampling is still very high, i.e.,
O(|W |KI), where K is the number of topics, I is the number
of iterations of Gibbs sampling, and W is the set of word tokens in
the document collection, which could be billions or trillions for a
large document collection. For example, learning 100 topics our 3
month Twitter dataset in the New York city region, which contains
0.25 million tweets, took 8.31 minutes. As our Twitter data is a 1%
sample of the geo-tagged tweet data, if we extend the result to a
collection of all the 3-month geo-tagged tweets the New York city
region based on the linear complexity, it would take 13.85 hours to
learn 100 topics from the New York city region. Therefore, we need
an efficient method to train topic models for each input of region
and timespan.

To address the challenge, we propose the following new idea.
We divide the collection of spatio-temporal documents into three-
dimensional cells and train topic models for the documents within
each cell. Then, to compute the topic models for a user specified
region and timespan, we combine the topic models of the cells that
are located in the specified region and timespan. To realize the idea,
we propose the following novel techniques.

1. We propose a novel and efficient algorithm with a bounded
error to combine two LDA topic models learnt from two doc-
ument sets, both falling in the specified region and time pe-
riod. Different from the existing topic modeling algorithms,
our algorithm samples topics for sets of words instead of in-
dividual words. The complexity of training the LDA model
on two document sets is O((|W1| + |W2|)KI), where W1

and W2 are sets of word tokens in the two document sets. In
contrast, our algorithm reduces the complexity toO(K(K+
|M2| + |V2|)I), where M2 is the smaller document set and
V2 is its vocabulary. Their sizes are much smaller than W1

and W2.

2. We develop a new approach to partitioning the collection of
spatio-temporal documents into an Octree [16], for index-
ing the documents. Instead of recursively partitioning the
three dimensional space into equal-sized cells, we consider
the word overlaps among the generated cells to determine
how to perform the partitioning. Our partitioning mechanism
enables our combining algorithm to achieve better accuracy,
although our proposed combining algorithm works for any
kind of partitioning. We also develop a mechanism to deter-
mine on which cells we pre-train topic models to guarantee
a given accuracy threshold.

3. We develop a framework to find the cells whose regions and
time periods fall in or overlap with the user specified region
and time period. Then we employ our proposed algorithms
to combine the pre-trained topic models in these cells to ob-
tain the topics for documents in the specified region and time
period.

In summary, the contributions in this study are threefold.
First, we define a practical and novel problem of extracting top-

ics for exploration from spatio-temporal documents within a region
and a timespan.

Second, we propose a novel approach comprising the aforemen-
tioned key techniques that is capable of efficiently mining topics
from a large number of spatio-temporal documents within a given
region and timespan.

Third, we conduct an extensive experimental study for evaluat-
ing our proposals on three large real-world datasets collected from
Twitter, Meetup, and Wikipedia, respectively. Our experiments
show that our proposed topic mining framework is able to improve
on the runtime by at least an order of magnitude compared to LDA [4]
and a variation of LDA [2] that supports online updates (online-
LDA). Meanwhile, the effectiveness of the proposed topic extrac-
tion framework, measured by perplexity, is close to those of LDA
and online-LDA. We also use some example topics extracted by
our framework to show that the quality of the extracted topics is
comparable to those of LDA and online-LDA.

The rest of this paper is organized as follows. Section 2 intro-
duces the preliminaries and the related work. Section 3 defines the
problem of mining topics given a bounded region and a timespan.
Section 4 presents an overview of the proposed solution. Section
5 introduces our methods. We present the experimental studies in
Section 6. Section 7 concludes the study.

2. PRELIMINARIES & RELATED WORK

Table 1: Summary of Notations
Notation Meaning

d a spatio-temporal document 〈id, l, tc, w〉
z(m,n) topic assigned to the n-th term of the m-th

document
p(v|k) probability of appearance of word v given topic k
ck∗,v the count that topic k is assigned to word v
ckm,∗ the count that topic k is assigned to the m-th

document
α, β hyper parameters of LDA
R input spatial region

[tb, te] input timespan

Table 1 presents the frequently used notations.
Preliminary on Topic Models. Topic models are probabilistic
models for discovering “topics” in a collection of documents. Each
document may contain several topics, e.g., “sports”, “digital de-
vices”, etc. If a document is more likely to be a “sports” document,
words such as “football”, “exercise”, etc., would be more likely
to appear in the document than “firework” or “pizza”, etc. Topic
models aim to reveal such latent semantic structure of a collection
of documents. In topic models, a document is modeled as a mixture
of topics and each topic is represented by a multinomial distribution
over words.

Latent Dirichlet Allocation (LDA) [4] is arguably the most suc-
cessful topic model to date. LDA is a generative model which gen-
erates topic distribution θd for each document d from a Dirichlet
distributionDir(α) and the word distribution φ for each topic from



another Dirichlet distribution Dir(β). The parameters α and β are
hyper parameters of LDA which are used for smoothing. For each
word token v in each document d, LDA draws a topic k from θd
and then generates v from the corresponding word distribution φk.

Estimating the parameters, i.e., word distribution for topics φ, in
LDA is intractable, and several algorithms (e.g., variational Expectation-
Maximization algorithm, collapsed Gibbs sampling, etc.) have been
proposed to solve the problem. Collapsed Gibbs sampling is a com-
monly used method to estimate the parameters for LDA. It works as
follows: 1) Randomly assign a topic (from a given number of top-
ics K) to each word token in the document; 2) Iteratively update
the topic assignment for each word token according to Eq. (1).

p(z(m,n) = k|Z−(m,n), α, β)

∝ (ck,−(m,n)
m,∗ + α)× c

k,−(m,n)
∗,v + β∑

r c
k,−(m,n)
∗,r + |V |β

,
(1)

where z(m,n) denotes the topic assignment for the n-th word in
document m, Z−(m,n) denotes the topic assignment for word to-
kens excluding the n-th word token in document m, ck,−(m,n)

m,v is
the count of assigning topic k to word v in document m exclud-
ing the topic assignment of the n-th word token in document m,
and wildcard * stands for any document/word. The set V is the
set of unique words, which is also called vocabulary, in the collec-
tion of documents. Intuitively, the first part of the equation tells
how prevalent is topic k in documentm, while the second part tells
how prevalent is word v belonging to topic k across all documents.
Since Gibbs sampling updates the topic assignment for each word
token (m,n) by computing Eq. (1) for K topics in each itera-
tion, the complexity of the algorithm is O(|W |KI), where W is
the set of word tokens in the collection of documents, and I is the
number of iterations. It could be very slow when the collection of
documents is large. After Gibbs sampling, the language model of
a topic (posterior word distribution given a topic) p(v|k) can be
estimated as:

p(v|k) =
ck∗,v + β∑

r∈V ck∗,r + |V |β
, (2)

where ck∗,v is the count of assigning topic k to word v in all docu-
ments.

Several studies exist on parallel implementation of LDA [26, 22,
1]. The main problem in the parallel LDA systems is that the topic-
word count ck∗,v in Eq. (1) is shared by all processors. To make
the topic-word counts consistent, all machines need to communi-
cate with each other at the end of each iteration of Gibbs sampling,
which incurs expensive communication cost. These systems can
at most achieve a sub-linear speedup and training LDA models re-
mains expensive.

Based on LDA, several online learning algorithms are proposed
for text streams [2, 28] to speed up the learning process. They aim
to sample topic assignments for new documents using a topic model
learnt from historical data and combine the topic assignments for
new documents to construct a new topic model. Sumait et al. [2]
propose an online updating method (Online-LDA) to sample new
documents using the counts of topic assignments in the historical
data (ckold,∗,v) as a part of the prior distribution, i.e., we set β′ =

ckold,∗,v + β. Let ck,−(m,n)
new,m,v be the count of assigning topic k to

word v in the m-th new document, excluding the topic assignment
for the n-th word token in the m-th new document. The update

function for online-LDA is:

p(z(m,n)
new = k|Z−(m,n)

new , Zold, α, β)

∝ (ck,−(m,n)
new,m,∗ + α)×

c
k,−(m,n)
new,∗,v + ckold,∗,v + β∑

r c
k,−(m,n)
new,∗,r + ckold,∗,r + |V |β

,

(3)

where Z−(m,n)
new is the topic assignments to word tokens in the new

document collection excluding the n-th word in document m, and
Zold is the topic assignments to word tokens in historical data.

Online-LDA has the same complexity as LDA on the set of new
documents, i.e.,O(|Wnew|KI), whereWnew is the set of word to-
kens in the new documents. But online-LDA saves the computation
for sampling topics on the old documents. Online-LDA is the state-
of-the-art technique which can be used to learn topics in a given
region and timespan. However, to the best of our knowledge, no
existing work proposes techniques for combining two LDA topic
models pre-trained from two document sets into one model as we
do in this work.

Data Cube and Text Cube. Our work is inspired by the concept of
data cube [7], which is widely used for Online Analytical Process-
ing (OLAP) on multi-dimensional data with operations like slice,
dice, roll-up, and drill-down. Each row in the multi-dimensional
text database contains some structured dimensions (i.e., attributes)
and unstructured text data. The existing work on analyzing and ex-
ploring multi-dimensional text database is closest to our problem.

Lin et al. [13] propose a text-cube model on multi-dimensional
text database. Text cube is a data cube where each cell aggregates
a set of documents with matching attribute values in a subset of
dimensions. Based on the text cube, they study the problem of
processing an IR query (i.e., a set of terms) with constraints on
dimensions to retrieve relevant documents. Simitsis et al. [20] pro-
pose a keyword driven OLAP system over a collection of multidi-
mensional text data. Operations of roll-up and drill-down can be
performed efficiently and accurately based on the content and the
link-structure of a dynamically selected document subset during
the query time. In addition, Ding et al. [5] study the problem of
finding top-k most relevant cells in text cube for a keyword query.
Similarly, based on the text cube, Zhao et al. [35] develop the TEX-
plorer system to rank candidate dimensions and cells for a keyword
query.

However, those text-cube based proposals do not consider the se-
mantic meaning (i.e., topics) of each term in documents. They are
actually orthogonal with our work, and our proposed techniques
can be integrated into these proposals for exploring spatial-temporal
topics of data cube. This is actually a great motivation for our work.
Moreover, our proposed combining algorithm in this paper fits per-
fectly to support the roll-up operation for topics of a text cube.

Zhang et al. [32] develop a topic-cube model for a multidimen-
sional text database. Specifically, the topic cube can be viewed
as a standard data cube augmented by a topic dimension based on
a hierarchical topic tree and the objective of the topic-cube is to
support users to drill-down and roll-up the text dimension along
the topic hierarchy. The topic tree in [32] is based on the topic
model generated from all documents in the dataset. However, our
problem requires the topic model to be generated from the docu-
ments in the user specified spatial region and time interval. More-
over, topic-cube does not support mining topics for user specified
regions. Therefore, topic cube cannot be applied to our problem.

Content Exploration. Some recent work aims at developing on-
line data exploration mechanism based on some clustering meth-
ods. Zhang et al. [33] propose MiTexCube by augmenting each cell



with micro-clusters that make the online processing more efficient.
More recently, Feng et al. [6] propose a system called StreamCube
to explore events over the spatio-temporal Twitter stream by clus-
tering hashtags. Each hashtag in StreamCube is represented by a
vector of terms/hashtags that co-occurred with the hashtag. Con-
sequently, the clusters are generated based on the tweets that have
hashtag(s), which only take 11% tweets according to a statistical
study [10]. One can use keyword extracted from the text instead of
hashtags to address the sparsity problem in StreamCube. However,
we focus on the problem that efficiently mines topics of a collection
of documents in the user specified region and timespan, as well as
the topic assignment of each selected document. The comparison
of clustering and topic modeling techniques is not our focus and we
leave this as future work.

Angel et al. [3] propose the Grapevine system that aims to track
entities in a large scale of documents. Grapevine extracts real-word
entities (e.g., Barack Obama) from a collection of text data (e.g.,
blog posts, news articles, and tweets) using available entity extrac-
tion algorithms (e.g., [18]). Given a temporal and demographic
restriction (e.g., location, gender), the topic in Grapevine is defined
by the most talked-about entities for the chosen dimensions. How-
ever, our topics are discovered from topic models where each topic
is represented by a probabilistic distribution over words. In addi-
tion, Grapevine uses semantic locations (country, state, city), while
we use coordinate locations.

Exploring Spatio-Temporal Information in Documents. There
exists a host of work on extracting spatial or/and temporal infor-
mation from text data (e.g., [23, 11]). Several studies aim at min-
ing geographical topics from a collection of spatio-temporal docu-
ments (e.g., [30, 9, 21, 31, 36]), and they mine both geographical
regions, each represented by a Gaussian distribution, and topics for
the whole collection. In some proposals [2, 27], the topic models in
different time slices are compared to detect burst/emerging topics.
Mathioudakis et al. [15] propose an approach to monitoring trends
over the Twitter stream by detecting and grouping bursty keywords
from tweets. Yin et al. [29] propose a user behavior model that
combines the influences of topics related to users’ intrinsic inter-
ests and the topics related to temporal context. Moreover, Strötgen
et al. [24] try to discover event-location pairs by considering the
co-occurrence of geographical and temporal expressions in docu-
ment content. However, these problems substantially differ from
our problem.

3. PROBLEM STATEMENT
We introduce our data model and define the problem of mining

topics over a specified region and timespan.

3.1 Data Model
Definition 1: Spatio-Temporal Document. A spatio-temporal
document is denoted by a quadruple d = 〈id, l, tc, w〉, where id
is the document id, which is assigned based on tc, the creation time
of d, l is a location with latitude and longitude, and w is a sequence
of word tokens from the vocabulary V = {v1, v2, ..., v|V |}. We
use d.w[i] to denote the i-th token in d.w. 2

The spatio-temporal documents in Definition 1 can be geo-tagged
tweets in Twitter, geo-tagged news in news portals, geo-tagged
photos with tags in Flickr, Points of Interest (POIs) and check-ins
with text descriptions in Foursquare, etc. Without loss of gener-
ality, we consider each document has only one location. When a
document contains more than one location, we duplicate the doc-
uments for each location. For example, if a tweet about European
SuperCup is related to three locations, (e.g., Barcelona, Sevilla, and

Tblisi), we generate three copies of the tweet and each copy is as-
signed to one location.

3.2 Problem Definition
Based on the definition of topic in Section 2, we present our

problem statement.

Definition 2: Topic Mining over Documents within a Specified
Region and a Timespan Query (TMRT Query). LetD be a set of
spatio-temporal documents, R be a rectangular region, and [tb, te]
be a time period. TMRT query is to mineK topics from documents
in D whose locations fall in R and creation time falls in [tb, te], as
well as the topic assignment of each selected document, based on a
given topic model. 2

In this paper, we use LDA to mine topics for spatio-temporal
documents because it is one of the most commonly used topic mod-
els.

d1 d2 d4

d3

d5
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23:00  Jul 3, 2015  to 

 21:00  Jul 7, 2015
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Figure 2: Example

Table 2: Information of Documents
doc time of creation tokens
d1 09:42 Jul 3, 2015 yummy, pizza
d2 10:18 Jul 6, 2015 espresso, bar, night
d3 13:43 Jul 4, 2015 Barcelona, champion, excited
d4 19:22 Jul 7, 2015 football, excited
d5 17:40 Jul 6, 2015 iPhone, Nike, exercise
d6 12:23 Jul 8, 2015 sleep, tired, holiday
d7 22:57 Jul 3, 2015 Barcelona, sightseeing
d8 18:41 Jul 4, 2015 marathon, exhausted
d9 21:42 Jul 4, 2015 holiday, parade, independence
d10 23:33 Jul 4, 2015 independence, firework
d11 17:19 Jul 3, 2015 3D, movie, boring
d12 10:40 Jul 7, 2015 sigmod, deadline

Table 3: Final Topic Assignment of R1

document topic of tokens
d2 espresso (k0), bar (k1), night (k1)
d3 Barcelona (k2), champion (k2), excited (k0)
d4 football (k2), excited (k0)
d5 iPhone (k1), Nike (k2), exercise (k2)

Example 1: Let D = {d1, d2, ..., d12} be a set of spatio-temporal
documents. The location of each document is presented in Fig-
ure 2. The creation time and the word tokens of each document
are presented in Table 2. The two rectangles R1 and R2 and their
corresponding timespans in Figure 2 represent two TMRT queries.



Table 4: Final Topic Assignment R2

document topic of tokens
d5 iPhone (k0), Nike (k1) exercise (k1)
d6 sleep (k0), tired (k1), holiday (k0)
d9 holiday (k0), parade (k2), independence (k2)
d10 independence (k2), firework (k2)

Based on the set of documents falling in the corresponding spa-
tial regions and timespans of R1 and R2, which are presented in
the first column of Table 3 and Table 4, respectively, we mine LDA
topic models by employing Gibbs sampling algorithm. Suppose the
number of topics (i.e., “K”) is set to 3, the final topic assignments
for each document in R1 and R2 are presented in the second col-
umn of Table 3 and Table 4, respectively. The three topics of R1

are given as follows (suppose the prior of word distribution of each
topic β = 0 in LDA):
k0: <p(excited|k0)=0.67, p(espresso|k0)=0.33>
k1: <p(bar|k1)=0.33, p(night|k1)=0.33,

p(iPhone|k1)=0.33>
k2: <p(Barcelona|k2)=0.2, p(champion|k2)=0.2,

p(football|k2)=0.2, p(Nike|k2)=0.2,
p(exercise|k2)=0.2>.

The topics of R2 is as follows:
k0: <p(holiday|k0)=0.5, p(iPhone|k0)=0.25,

p(sleep|k0)=0.25>
k1: <p(Nike|k1)=0.33, p(exercise|k1)=0.33,

p(tired|k1)=0.33>
k2: <p(independence|k2)=0.5, p(parade|k2)=0.25,

p(firework|k2)=0.25>.
2

4. FRAMEWORK OVERVIEW
Based on LDA, we aim at miningK topics from a spatio-temporal

document collection D for a TMRT query Q, which comprises a
user specified region R and time interval [tb, te]. In general, the
collection of spatio-temporal documents is treated as a data ware-
house and we conduct topic mining over a subset of documents
falling in the region and time interval specified in Q. A straightfor-
ward solution would work as follows: We first find a set of docu-
mentsD′ such that for all d ∈ D′, d locates inR and d.tc ∈ [tb, te].
Then we learn K topics from the documents in D′ using the col-
lapsed Gibbs sampling technique [14]. However, as discussed in
Section 1, it is time-consuming (O(|W |KI)) to train the topic
model every time a TMRT query is submitted. Hence, we need
a more efficient mechanism to handle the TMRT query.

An underlying idea of many approaches to performing OLAP is
to organize the data into data cubes with dimensional hierarchies
and summary statistics (e.g., [6, 32, 13]). With the help of data
cubes, we are able to efficiently explore the data by different gran-
ularity levels [13]. Inspired by the idea of data cube, we organize
the spatio-temporal documents into cells in a hierarchical index,
and pre-compute topic models for a set of selected cells.

The remaining challenges of processing the TMRT query in-
clude: (1) How to leverage the pre-trained models associated with
indexed cells to efficiently compute the topic model for the given
query Q with region R and timespan [tb, te]; (2) How to organize
the documents into a hierarchical index, and which cells in the hi-
erarchical index do we pre-compute topic models to help accelerate
online topic mining for the TMRT query?

To address the first challenge, we propose a novel idea for effi-
ciently combining the topic models of two cells (Section 5.1). Our
idea is to accelerate the topic learning process by sampling top-

ics for a set of word tokens instead of sampling topics for indi-
vidual word tokens. We prove that our combining algorithm has
a bounded error compared with the online-LDA algorithm. Based
on our idea of combining topic models, we propose an online topic
mining algorithm to search for cells which are completely or highly
covered by the spatial region and timespan of query Q, and com-
bine the models of these cells using our combining algorithm (Sec-
tion 5.4).

To address the second challenge, we propose to organize the
spatio-temporal documents based on the idea of Octree [16]. Oc-
tree is an extension of Quadtree in a three-dimensional space. It
recursively partitions the space into eight equal-sized cells. Differ-
ent from the traditional Octree in which a cell is partitioned into
eight equal-sized subcells, we do the partitioning differently – we
consider two objectives in determining how to partition a cell: 1)
minimizing the word overlap among the subcells; and 2) balanc-
ing the number of documents among the subcells (Section 5.3). In
addition, we propose an algorithm to determine on which cells to
pre-train topic models and when to stop partitioning such that the
space requirement does not exceed a specified threshold and the er-
ror of combining topic models does not exceed a predefined bound.

Figure 3 illustrates the framework of our approach. The docu-
ments are indexed by an Octree. Given a TMRT query with a rect-
angle and a timespan, we traverse the Octree to retrieve the topic
models of the cells covered by the rectangle and the timespan. Next
we combine these retrieved topic models. Finally we output the K
topics of the new topic model computed by our combining algo-
rithm.

Combining Algorithm with 

Bounded Error

Octree

Spatio-temporal 

Documents

… … … ...

Learnt 

Topic Model

Learnt 

Topic Model

Learnt 

Topic Model

TMRT Query

Extracted Topics

… … … ...

spatial (y)

spatial (x)
temporal

Figure 3: Framework

5. ALGORITHMS
In this section, we present the details of our algorithms for han-

dling the TMRT queries. Specifically, we first present our sampling
algorithm for combining the topic models of two Octree cells and
its extension to combining multiple cells in Section 5.1. Then, we
present a method to handle the cells that overlap with, but are not
contained by the user specified region and timespan (Section 5.2).
We present our method for partitioning the spatio-temporal doc-
uments into an Octree and the offline pre-computation for Octree
cells in Section 5.3. Finally, we give our online topic learning al-
gorithm for a TMRT query in Section 5.4.



5.1 Combining Topics of Two Octree Cells
In this subsection, we consider the case that the given region

R and time interval [tb, te] in the TMRT problem exactly cover
two Octree cells, for which we have pre-trained topic models. We
will consider the general case and how to construct the Octrees
in the subsequent subsections. We aim to combine the two pre-
trained topic models into one topic model withinR and [tb, te]. The
combining is challenging in that the topics in one model cannot be
simply associated to the other model. Example 2 shows the pre-
trained topics of two cells, which are represented by distribution
over words. Even though k2 in cell 1 is similar to k1 in cell 2
(about sports), they are not exactly the same topic because their
distributions are different. Moreover, a topic in one cell could be
similar to multiple topics in the other cell. For example, k0 in cell
2 is similar to k0 and k1 in cell 1. Due to the incompatibility of
topics between the two models, we cannot simply combine them.
We need to re-sample the topic models of the cells to make them
compatible for combination.

Example 2: Pre-trained topics for cell 1:
k0: <p(iPhone|k0)=0.43, p(Android|k0)=0.57>
k1: <p(bar|k1)=0.33, p(night|k1)=0.33,

p(iPhone|k1)=0.33>
k2: <p(Barcelona|k2)=0.25, p(champion|k2)=0.25,

p(football|k2)=0.25, p(Nike|k2)=0.25>
Pre-trained topics for cell 2:
k0: <p(holiday|k0)=0.5, p(iPhone|k0)=0.25,

p(sleep|k0)=0.25>
k1: <p(Nike|k1)=0.33, p(exercise|k1)=0.33,

p(tired|k1)=0.33>
k2: <p(independence|k2)=0.5, p(parade|k2)=0.25,

p(firework|k2)=0.25>.
2

There exist two solutions to learn the topic model for a TMRT
query: 1) re-training an LDA model [4] for the spatio-temporal
documents in the two cells; and 2) re-sampling the topics for one
of the two Octree cells given the topic assignment of the other one
using online-LDA [2]. However, both solutions suffer from high
computation cost. Let the sets of word tokens in the two cells be
W1 andW2, respectively, whereW2 is for the cell containing fewer
words, i.e., |W2| < |W1|. The first solution needs to sample top-
ics for all the documents in the two cells, and its complexity is
O((|W1| + |W2|)KI). The second solution only samples topics
for documents in the cell containing fewer word tokens, and thus
the training time can be reduced at least by half, i.e., O(|W2|KI).
Although the second solution utilizes the pre-trained model of one
cell, it fails to utilize the other pre-trained model.

To this end, we propose a combining algorithm that is able to
leverage the pre-trained models of both cells. We reduce the com-
plexity to O((K + |M2|+ |V2|)KI), where M2 and V2 are the set
of documents and the vocabulary of the smaller cell, respectively.
Note that K + |M2| + |V2| is much smaller than |W2|. We also
prove that our algorithm has a bounded sampling error compared
to online-LDA.

Similar to online-LDA, we use the topic assignment of one cell
to re-train the model for the other cell. The significant difference
is that we do not sample the topic for each word token in the doc-
uments one by one as in online-LDA. Instead, we sample the topic
for word tokens that are assigned to the same topic in the pre-
trained model simultaneously. Since this treatment is an approx-
imation to online-LDA, we prove an error bound of our sampling
algorithm compared to online-LDA. To the best of our knowledge,

the idea is new although the topic model has attracted extensive
research attention.

Let Z1 and Z2 be the topic assignment for the two sets of word
tokens W1 and W2, respectively. Without loss of generality, we
assume that |W1| > |W2|. We want to use the topic assignments
Z1 of the pre-trained model for cell 1 to resample Z2. Consider the
fact that the topic assignments of the pre-trained model divide the
set of tokens W2 into K subsets: {W21, W22, ..., W2K}. Thus,
we can jointly sample the word tokens of each subset according to
the joint posterior distribution given the other topic assignments:
p(ZW2i

2 = k|Z−W2i
2 , Z1, α, β). Here, we denote ZW2i

2 = k as
the event that all word tokens in W2i are assigned to topic k and
Z−W2i

2 as the topic assignments for the other subsets. The parame-
ter α is prior of topic distribution and β is prior of word distribution
for each topic as used in LDA.

Inference: We use collapsed Gibbs sampling to infer topics for
the word tokens. Specifically, we compute the complete likelihood
of the model, i.e., p(W2, Z2,Θ,Φ|Z1, α, β), where Θ is the topic
distribution and Φ is word distributions for topics. To compute the
posterior distribution of assigning a topic to a set of word tokens
(i.e., p(ZW2i

2 = k|Z−W2i
2 , Z1, α, β)), we integrate Θ and Φ out

and compute the posterior as:

p(ZW2i
2 = k|Z−W2i

2 , Z1, α, β)

∝
∏

dm∈D2i

(ck,−W2i
2,m,∗ + α)c

i
2,m,∗

∏
v∈V2i

(
ck,−W2i
2,∗,v + β′kv∑
r c

k,−W2i
2,∗,r + β′kr

)c
i
2,∗,v ,

(4)

where D2i is the set of documents that contain the word tokens in
W2i and V2i is the set of unique words inW2i. The pseudo count β′

is the sum of actual counts in cell 1 plus β, i.e., β′kv = ck1,∗,v + β,
where ck1,∗,v is the count of assigning topic k to word v in cell
1. The count ci2,m,∗ is the number of words in document dm that
are also in W2i. Similarly, ci2,∗,v is the number of occurrences
of word v in W2i. The first part of Eq. (4) is the likelihood of
assigning topic k to the current set of documents (D2i) without
considering the topic assignments on W2i. The second part of Eq.
(4) is the likelihood of assigning topic k to the unique words inW2i

by excluding the topic assignments of W2i. The two parts of Eq.
(4) correspond to the two parts in LDA (Eq. (1)).

Combining: To combine the topic model of two cells, we apply
Eq. (4) to sample a topic for each word token set. We repeat the
sampling process until the complete likelihood converges or the
sampling process exceeds a large number of iterations, i.e., 1000.
Let c̃k2,∗,v be the final count of assigning topic k to word v. We
combine the topic model by summing up the actual counts of the
two cells: c̃k∗,v = ck1,∗,v + c̃k2,∗,v . Therefore, the word distribution
of each topic k for the combined model φkv could be estimated as:

φ̃kv =
c̃k∗,v + β∑

r c̃
k
∗,r + |V |β

. (5)

Complexity: The computation of Eq. (4) has time complexity
O(|M2i|+ |V2i|) because we need to compute the production over
the documents and words. We have K token sets in total and we
need to compute Eq. (4) for K topics to sample the topic for each
token set. Therefore, the total time complexity is O(K2(|M2i| +
|V2i|)I) = O((K + |M2| + |V2|)KI), where M2 is the set of
documents and V2 is the set of unique words in cell 2. Since
K+ |M2|+ |V2| is much smaller than |W2| (e.g., less than 10% of
|W2| for tweets and even lower for long documents).



Sampling Error: We next prove that our algorithm has a bounded
error compared to the topic models returned by online-LDA.

THEOREM 1. Let φ(1,2)
k and φ̃(1,2)

k be the language models for
topic k after we combine cell 2 to cell 1 using online-LDA (Eq. (3))
and our approach (Eq. (4)), respectively. Let W1 and W2 be the
word token sets of cell 1 and cell 2, respectively. Then, the expecta-
tion of Euclidean distance between two models Ed(φ

(1,2)
k , φ̃

(1,2)
k ) <√

2 |W1∩W2|+|W2|−1
|W1|+|W2|

.

PROOF. Let Ck
2 =

∑
r c

k
2,∗,r , C̃k

2 =
∑

r c̃
k
2,∗,r and Ck

1 =∑
r c

k
1,∗,r . Since the two sampling algorithms are based on the

same prior α and β′kv = ck1,∗,v + β, we can assume Ck
2 ≈ C̃k

2 .
This assumption means the two algorithms will results in a similar
topic proportion, i.e., the total counts for each topic is similar. Then
we infer the bound as:

Ed(φ
(1,2)
k ,φ̃

(1,2)
k )2 ≈ E

∑
r∈W1∩W2

(
ck2,∗,r − c̃k2,∗,r

Ck
2 + Ck

1 + |V |β
)2

≤ E
∑

r∈W1∩W2

(ck2,∗,r)2 + (c̃k2,∗,r)2

(Ck
2 + Ck

1 + |V |β)2

≤
E(

∑
r∈W1∩W2

ck2,∗,r)2 + E(
∑

r∈W1∩W2
c̃k2,∗,r)2

( |W1|+|W2|
|W2|

Ck
2 + |V |β)2

.

(6)

We next apply the definition of variance E(X−X̄)2 = E(X2)−
(EX)2 to the inequality. Let X =

∑
r∈W1∩W2

ck2,∗,r , then we
have:

E(
∑

r∈W1∩W2

ck2,∗,r)2 = (
|W1 ∩W2|
|W2|

Ck
2 )2

+ E(
∑

r∈W1∩W2

ck2,∗,r −
|W1 ∩W2|
|W2|

Ck
2 )2

< (
|W1 ∩W2|
|W2|

Ck
2 )2 +

∑
r∈W1∩W2

E(ck2,∗,r −
Ck

2

|W2|
)2.

(7)

Since the maximum value of the second term appears when we
assign all words to one topic, i.e., it is not hard to infer that the sec-
ond term is smaller than |W2|−1

|W2|
(Ck

2 )2. We apply similar inference
on the term E(

∑
r∈W1∩W2

c̃k2,∗,r)2 in Eq. (6) to obtain the error

bound of combining two topic models:
√

2 |W1∩W2|+|W2|−1
|W1|+|W2|

.

According to Theorem 1, the smaller overlap of words between
two cells will yield a lower error bound. Combining small cells to
large cells yield a lower error bound.
Combining Multiple Cells: We extend the aforementioned method
for combining two Octree cells to multiple cells. Suppose that the
given region R and time interval [tb, te] exactly cover n cells, each
having a pre-trained topic model. We can apply our combining
method n − 1 times on the n cells to learn the topic model. Next,
we show that the error bound of combining multiple cells is param-
eterized by the number of combinings.

THEOREM 2. Let φ(1,...,n)
k and φ̃(1,...,n)

k be the language mod-
els for topic k obtained by combining topics of n cells according
to Eq. (3) and Eq. (4), respectively. Let W1, ...,Wn be the sets
of word tokens of n cells, respectively. Then, the expectation of
Euclidean distance between two models Ed(φ

(1,...,n)
k , φ̃

(1,...,n)
k ) <

f(n) =
√

2
|∪n

i=2Wi∩W1|+
∑n

i=2 |Wi|−1∑n
i=1 |Wi|

.

PROOF. Let Ck
i =

∑
r c

k
i,∗,r , C̃k

i =
∑

r c̃
k
i,∗,r , where 1 ≤ i ≤

n. Similar to Theorem 1, we assume Ck
i ≈ C̃k

i . Then we have:

Ed(φ
(1,...,n)
k ,φ̃

(1,...,n)
k )2 ≈ E

∑
r∈∪n

i=2Wi∩W1

(

∑n
i=2 c

k
i,∗,r − c̃ki,∗,r∑n

i=1 C
k
i + |V |β

)2

≤ E
∑

r∈∪n
i=2Wi∩W1

(
∑n

i=2 c
k
i,∗,r)2 + (

∑n
i=2 c̃

k
i,∗,r)2

(
∑n

i=1 C
k
i + |V |β)2

<
2(
|∪n

i=2Wi∩W1|+
∑n

i=2 |Wi|−1∑n
i=2 |Wi|

∑n
i=2 C

k
i )2

(
∑n

i=1 |Wi|∑n
i=2 |Wi|

∑n
i=2 C

k
i + |V |β)2

.

(8)

Thus, the error bound is
√

2
|∪n

i=2Wi∩W1|+
∑n

i=2 |Wi|−1∑n
i=1 |Wi|

.

5.2 Processing Partially Covered Cells
Since the given query with spatial boundary R and time inter-

val [tb, te] may not cover an Octree cell completely, but only a part
of it, we need to consider how to utilize the partial covered cells.
Suppose the query completely covers n cells and partially covers
n′ cells and let φ̃(n) be the language model after combining the
n completely covered cells. One solution is to apply online-LDA
to the documents covered by the region and timespan of the given
TMRT query in the n′ partially covered cells, using φ̃(n) as the
prior of language models. However, when the number of docu-
ments in the n′ partially covered cells is large, it is not efficient to
apply online-LDA to these n′ partially covered cells.

Notice that for the cell that has a high overlap with R and [tb, te]
(e.g., 90% of the documents are covered by R and [tb, te]), its pre-
trained topic model is often close to the one learnt from the cov-
ered documents. Therefore, it is desirable to use the pre-trained
topic model of the cell to approximate the topic models learnt from
the covered documents, and apply our proposed fast sampling algo-
rithm presented in Section 5.1 to combine it to φ̃(n). In this section,
we prove that there exists an error bound parameterized by the over-
lap using the pre-trained topic model to approximate the one learnt
on covered documents.

THEOREM 3. Let φALL
k and φPART

k be the language models
for topic k learnt on all the documents and the covered documents
of a cell, respectively. Let p ∈ (0, 1) be the percentage of doc-
uments in the cell that are covered by the input spatial boundary
and timespan. Then, the Euclidean distance between two models

Ed(φALL
k , φPART

k ) <

√
(1+p2)

p
.

PROOF. Let ck,ALL
∗,r and ck,PART

∗,r be the counts of assigning
topic k to word r in all the documents and the covered documents,
respectively. LetCk,ALL =

∑
r c

k,ALL
∗,r ,Ck,PART =

∑
r c

k,PART
∗,r .

Without loss of generality, we assume the topics of tokens in the
covered documents follow similar distribution of those in all the
documents in the cell, i.e., Ck,PART ≈ pCk,ALL. Then, the fol-
lowing inequalities hold:

Ed(φALL
k , φPART

k )2 ≈ E
∑
r

(
ck,ALL
∗,r + β

Ck,ALL + |V |β −
ck,PART
∗,r + β

pCk,ALL + |V |β )2

<
E(

∑
r c

k,ALL
∗,r )2 + E(

∑
r c

k,PART
∗,r )2

(pCk,ALL + |V |β)2

(9)



BecauseCk,PART ≈ pCk,ALL, the numerator in Eq. (9) is (1+

p2)Ck,PART . Thus, we have Ed(φALL
k , φPART

k ) <

√
(1+p2)

p
.

According to Theorem 3, we combine the topic models of par-
tially covered (at least τp percent of coverage) cells to those of com-
pletely covered cells with bounded error. Then for the remaining
documents that are covered by the TMRT query, but are not in the
cells covered by the query completely or at least τp percent, we use
online-LDA to sample the topics for them.

5.3 Octree based Pre-Computation
After presenting our techniques for combining pre-computed topic

models, we are now ready to present our techniques for the of-
fline pre-computation process. The topic models built in the offline
phase will be used to support our online topic mining algorithm.

In the offline pre-computation process, we need to consider two
important research problems. First, how to divide the spatio-temporal
documents in a large Octree cell into smaller cells to answer TMRT
query efficiently and effectively, namely Octree Cell Division prob-
lem, which affects the accuracy and efficiency of our combining
algorithm, and thus the efficiency and effectiveness of answering
TMRT queries. Second, how to decide on which Octree cells we
pre-train a topic model to balance the efficiency, storage, and accu-
racy of our approach, namely Octree Cell Pre-Training problem.
Next, we present our approaches to solving the two problems.
Octree Cell Division: One straightforward way to divide a large
Octree cell into smaller ones is to divide it equally in both spatial
and temporal dimensions. However, this method is not optimized
for our combining algorithm because it does not consider the word
overlap between the child cells, which affects the accuracy of our
algorithm for combining topic models as given in Theorem 1.

In this paper, we propose to select the division point for each
dimension (latitude, longitude and time) by minimizing the word
overlap between the 8 child cells divided by the division point.
Specifically, suppose Dp be the set of documents in the Octree
cell to be divided, D(i)

p (x) be the i-th child cell divided by 3-
dimensional point x (latitude, longitude, and time). We optimize
the following objective function:

argmin
x

8∑
i=1

8∑
j=1,j 6=i

|{∪
d∈D(i)

p (x)
{d.w}} ∩ {∪

d∈D(j)
p (x)

{d.w}}|

s.t.
|{d|d(h) > x(h), d ∈ Dp}|

|Dp|
> σ,

|{d|d(h) ≤ x(h), d ∈ Dp}|
|Dp|

> σ,

∀h ∈ {latitude, longitude, time},
(10)

where d(h) is one of the three dimensions of document d, x(h) is
one of the three dimensions of the division point x, and σ is the
threshold to control at least how many percentages of documents
should be assigned to child cells on both sides of each dimension
after division. This treatment is important to balance the size and
overlap of the two sub-cubes. An extreme case could happen when
we divide the cell into 7 empty cells and a cell that contains all the
documents to achieve zero overlap. However, this division is mean-
ingless for accelerating online topic learning. Our treatment can
avoid the extreme case. More importantly, our method for Octree
cell division can achieve a smaller error bound than the straightfor-
ward method of dividing a cell into eight equal-sized cells accord-
ing to Theorem 1. When the division point of the straightforward

method does not satisfy Eq. (10), the overlap between any two sub-
cubes is not minimized, and thus the error bound of the straightfor-
ward method is larger than that is obtained by the optimal division
point in Eq. (10) according to Theorem 1.

We solve this optimization problem as follows. Documents that
fall in the cell to be partitioned comprise the set of candidate di-
vision points. We traverse these documents and select the point
(document) that achieves the minimum objective score defined in
Eq. (10). For each candidate point, it takes O(|W ′p|) to compute
Eq. (10), where W ′p is the set of word tokens in the documents
within the constraints D′p. Totally we have |D′p| candidate points,
and thus the worst case time complexity is O(|D′p||W ′p|).

Octree Cell Pre-training: There exist two trade-offs in selecting
the cells for topic model pre-computation. First, learning topics for
cells in higher levels help improve accuracy of our method by re-
ducing the number of combining operations if the region and times-
pan in the query cover the high-level cell. Nevertheless, a cell from
higher levels is less likely to be completely covered by a user spec-
ified region and timespan. TMRT queries with small regions and
narrow timespans may not contain the high level cells, and thus we
cannot use the pre-trained topic models on high level cells to ef-
ficiently answer those TMRT queries. Second, if we build a deep
Octree and pre-trained topic models for all cells, there is a better
chance we can leverage the pre-trained models by our combining
algorithm for a TMRT query. However, learning topic models for
all cells in a deep Octree is space and time consuming.

Specifically, to make our online topic combining algorithm effi-
cient and effective, we want to choose a group of Octree cells such
that 1) the topic models built on these cells do not exceed a given
space threshold τs; and 2) it is guaranteed that the error bound of
combining topic models in the nearest descendants of these cells
does not exceed a given threshold τe. This is because even though
the TMRT query does not completely cover a high level cell, we
can still combine the lower level cells covered by the query without
exceeding the error threshold τe. To achieve this goal, we propose
a greedy division algorithm for building the Octree and select the
cells for pre-computation as described in Algorithm 1.

The main idea of the algorithm is to divide the Octree as finer-
grained as possible within the space and accuracy threshold. We
first insert all the spatio-temporal documents to the root of the Oc-
tree (line 1). Each time, we try to divide the largest cell (that con-
tains largest number of spatio-temporal documents) into 8 subre-
gions based on Eq. (10) (lines 5 – 6). To efficiently rank and find
the largest cell, we maintain a max heap for cells to be divided with
the number of spatio-temporal documents contained in each cell as
the key (line 2). We invoke function UpdateModelPos (lines
7 – 10) to estimate the number of topic models we need to learn
to guarantee the accuracy threshold τe. If the number of models
exceeds the space threshold τs, we withdraw the division of cur-
rent cell and stop dividing the Octree (lines 8 – 11); Otherwise, we
insert the children of the current cell to the max heap to further di-
vide them (lines 12 – 14). We repeat this process until the number
of models exceeds the space threshold.

The function UpdateModelPos updates the number of mod-
els recursively from bottom to top. We aggregate the number of
models to be learnt in the descendant cells of the current cell (lines
4 – 5). Suppose that the number of models in the descendants is
subCount. Then we need subCount−1 combining operations to
construct a topic model for the current cell. We can measure the er-
ror bound of the subCount−1 combining operations using a func-
tion of the number of combining operations, i.e., f(subCount−1).
When the error bound is larger than the accuracy threshold τe, we
train a topic model for the current cell to ensure that the error does



not exceed the accuracy threshold (lines 6 – 8). We introduce an
attribute placeModel to mark the cells we need to learn a topic
model.

After applying Algorithm 1, we traverse the Octree and check
the placeModel attribute of each cell. If it is true, we learn a topic
model for the cell.

Algorithm 1: GreedyDivision
Input: A set of spatio-temporal documents D, space threshold τs,

error threshold τe
Output: Qctree T
begin

1 Initialize T and Insert D to T ;
2 Initialize max heap H , H .Insert(T);
3 modelCount ← 0;
4 while modelCount < τs do
5 T ′ ← H .DeleteTop();
6 T ′.Subdivide();
7 modelCount ← UpdateModelPos(T , τe) ;
8 if modelCount > τs then
9 Withdraw the subdivision for T ′;

10 modelCount ← UpdateModelPos(T , τe);
11 return T
12 foreach Tc in T ′.Children do
13 if Tc.D ∩D 6= ∅ then
14 H .Insert(Tc);

15 return T
Function UpdateModelPos(T , τe)

1 modelCount ← 0;
2 if T is not leaf then
3 subCount ← 0;
4 foreach Tc in T.Children do
5 modelCount ← subCount+

UpdateModelPos(Tc, τe);

6 if f(subCount − 1) > τe then
7 modelCount ← modelCount + 1;
8 T.placeModel← True;

9 else
10 modelCount ← modelCount + subCount
11 T.placeModel← False;

12 else if T.D ∩D 6= ∅ then
13 modelCount ← 1;
14 T.placeModel← True;

15 return modelCount;

5.4 Topic Mining within Region and Time In-
terval

Algorithm 2: OnlineLearning
Input: Octree T , spatio-temporal query Q = {R, [tb, te]}, coverage

threshold τp ∈ (0, 1]
Output: Topic model within Q
begin

1 N ← CellSelection(T , Q, τp);
2 Sort N by descending order of cell size;
3 Model← N [0].Model;
4 for i = 1 to N.length do
5 Model← FastSetSampling(Model, N [i].Model);

6 Dremain ← {d|d 6∈ N, d ∈ Q};
7 Model← OnlineLDA(Model, Dremain);
8 return Model

Algorithm 3: CellSelection
Input: a Octree T , spatio-temporal query Q = {R, [tb, te]},

coverage threshold τp ∈ (0, 1]
Output: cell set N
begin

1 N ← ∅;
2 if ( |T.D∩Q.D|

|T.D| > τp) and T has pre-trained topic model then
3 N ← N ∪ {T};
4 else if T.D ∩Q.D 6= ∅ then
5 foreach Tc in T.Children do
6 N ← N∪ CellSelection(Tc);

return N ;

Given an Octree with pre-trained topic models, we are now ready
to present our online topic mining process for a TMRT query with
region R and interval [tb, te] in Algorithm 2. We first find the cells
that are covered by the given region at least τp percent and contain
pre-trained topic models (line 1, CellSelection). Then, we or-
der the returning cells in the descending order of their size (line 2)
because combining smaller cells to larger cells could be more effi-
cient as discussed in Section 5.1. Next, we combine the models of
those cells using our fast word set based sampling algorithm (line
5, FastSetSampling). Finally, we invoke online-LDA to han-
dle the remaining documents that are not covered by the founded
cells.

In Algorithm 2, the function CellSelection returns cells
that are completely or highly covered by the given TMRT query
Q = {R, [tb, te]}. When we select cells to combine, we aim to
reduce the number of combining operations for 1) reducing the to-
tal combining time cost, and 2) reducing the error of combining.
Therefore, we follow the greedy principle to chooses cells as large
as possible (Algorithm 3). The sets T.D and Q.D are the sets of
documents covered by the current cell T and queryQ, respectively.

In Algorithm 3, we traverse the Octree tree in a breadth-first
manner. We add the current cell to the result set if the cell is com-
pletely or highly covered by the given query Q (line 2). We con-
tinue to search lower levels if the current cell has overlap with Q
(lines 4 – 6). We use a predefined coverage threshold τp to decide
whether a cell is highly covered by Q and the error bound has been
proven in Theorem 3.

6. EXPERIMENTAL RESULTS
We introduce the experimental setting in Section 6.1. We report

the offline pre-computation cost of our framework in Section 6.2,
and the experimental results in Sections 6.3 and 6.4. We show some
example topics discovered by our algorithm in Appendix A.2.

6.1 Experimental Setup
Data Sets Our experiments are conducted on three real-life datasets
collected from Twitter, Meetup and Wikipedia, respectively. We
present our experimental results on Twitter, and Meetup in this sec-
tion and the results on Wikipedia in Appendix A.1. Dataset Twitter
comprises 7 million tweets posted from Aug 2012 to Oct 2012 in
United States. Each tweet has text, location (latitude and longi-
tude), and creation time, and each tweet contains 9 words on av-
erage. Dataset Meetup comprises 1.1 million events posted from
Jan 2006 to Jun 2015. Each event has text description, location and
creation time. and each Meetup event description has around 109
words on average. For Twitter, we randomly hold out 20% tweets
of each day as test data to evaluate the accuracy of the topic models.



For Meetup, we randomly hold out 20% words of each document as
documents in test data to evaluate the accuracy of the topic models.
The details of the two datasets are listed in Table 5.

Table 5: Dataset Statistics
Datasets Twitter Meetup

# Documents 7,012,778 1,099,614
# Word Tokens 69,075,864 120,484,706
Vocabulary Size 137,141 88,004
Time Duration Aug 2012 - Oct 2012 Jan 2006 - Jun 2015

Baseline Methods We compare our method using fast set sampling
(FFS) with the following four methods.

LDA: We learn topics for the documents in the given region and
timespan using LDA [4] for each TMRT query.

Online-LDA: We leverage the Octree structure in our framework
to find the largest cell that is covered by the given region and times-
pan, and apply online-LDA [2] to sample the remaining documents
based on the topic model of the largest cell.

FFS-EQ: We use our fast sampling algorithm to learn topics for
TMRT queries. The difference from FFS is that FFS-EQ partitions
a cell into 8 qual-sized smaller cells when building the Octree.
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Figure 4: Offline Pre-computation Cost w.r.t. Accuracy
Threshold τe
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Figure 5: Offline Pre-computation Cost w.r.t. Space Threshold
τs

Evaluation Metrics To evaluate the efficiency and accuracy of the
two models, we randomly generate 100 pairs of region and times-
pan with random size, each containing at least 100 documents in the
test set for accuracy evaluation. For efficiency, we report the aver-
age runtime of the 100 pairs of region and timespan for all methods.
To evaluate accuracy, we use perplexity to measure how likely we
can use the model to generate the test set, which is a commonly
used measure to evaluate the quality of topic models [25]. Lower
perplexity means that the model has better ability of generalization.
Perplexity is computed by using the probabilistic model learnt from
the training set to estimate the likelihood of generating the test set.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

20 40 60 80 100

R
u
n
ti

m
e
 (

m
in

u
te

s)

Number of Topics (K)

FFS
FFS-EQ

(a) Twitter

 0

 100

 200

 300

 400

 500

 600

 700

 800

20 40 60 80 100

R
u
n
ti

m
e
 (

m
in

u
te

s)

Number of Topics (K)

FFS
FFS-EQ

(b) Meetup

Figure 6: Offline Pre-computation Cost w.r.t. Number of Topics
K

Specifically, it is computed as follows:

perplexity(Wtest) = exp{− log p(Wtest|Φtrain)

|Wtest|
}, (11)

where |Wtest| is the set of word tokens in the test set, and Φtrain

is the topic model to be evaluated. We apply the “left-to-right”
method [25], which is often used for evaluating topic models, to
estimate perplexity. We report the sum of perplexity of models
learnt from the 100 pairs of region and timespan.
Parameter Settings We have three parameters in our framework,
i.e., accuracy threshold τe, space threshold τs, and number of topics
K. Note that the accuracy threshold τe is in fact a function of
number of cells (n) to combine f(n). For simplicity, we use τe =
f(n) to denote the accuracy threshold of combining n cells. The
space threshold specifies the maximum number of topic models to
pre-train. We analyze the effect of these parameters by varying one
parameter while fixing the others as default values. The settings of
each parameter is shown in Table 6. The default settings of these
parameters are τe = f(82) (i.e., learning topic models every 2
levels in the tree), τs = 5000 and K = 100. We set the constraint
for cell division σ in Eq. (10) at 0.3. Online-LDA and FFS-EQ use
the same settings as our method (FFS).

All algorithms are implemented in C# on a workstation with In-
tel(R) Xeon(R) CPU E5-2680 v2 @2.80GHz and 64GB RAM.

Table 6: Parameter Settings
Parameter (notation) Settings Default

accuracy threshold (τe) f(81) to f(85) f(82)
space threshold (τs) 5K to 20K (topic models) 5K

number of topics (K) 20 to 100 100

6.2 Pre-computation Cost
We report the pre-computation cost of FFS-EQ and our method

FFS with different parameter settings. From Figure 4, we observe
that the pre-computation cost is higher when the accuracy threshold
τe is set at smaller value (corresponding to smaller error). This is
because we need to learn topic models in higher level cells (which
contain more documents) in the Octree to achieve better accuracy.
Similarly, as the space threshold τs or the number of topics in-
creases, the pre-computation costs of the three methods increase as
shown in Figure 5 and Figure 6.

Our framework (FFS) with default setting takes around 100 min-
utes for pre-computation on Twitter data and 300 minutes on Meetup
data. The pre-computation time of FFS and FFS-EQ is similar
because the computation cost of pre-training topic models over-
whelms the computation cost of our cell division method as de-
scribed in Eq. (10).
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Figure 7: Runtime w.r.t. Accuracy Threshold τe
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Figure 8: Perplexity w.r.t. Accuracy Threshold τe
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Figure 9: Runtime w.r.t. Space Threshold τs
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Figure 10: Perplexity w.r.t. Space Threshold τs
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Figure 11: Runtime w.r.t. Number of topics K
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Figure 12: Perplexity w.r.t. Number of Topics K

1

10

100

1000

0.0001 0.001 0.01 0.1

R
u

n
ti

m
e
 (

se
c
o

n
d

s)

Region Size

FFS
Online-LDA

LDA
FFS-EQ

(a) Twitter

1

10

100

1000

0.0001 0.001 0.01 0.1

R
u

n
ti

m
e
 (

se
c
o

n
d

s)

Region Size

FFS
Online-LDA

LDA
FFS-EQ

(b) Meetup

Figure 13: Runtime w.r.t. Region Size
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Figure 14: Perplexity w.r.t. Region Size

6.3 Evaluation on Different Parameters

Varying Accuracy Threshold τe The accuracy threshold is used
to guarantee the error bound of topic combining when we build the
Octree as discussed in Section 5.3. We set the threshold as f(8),
f(82), f(83), f(84), and f(85), which indicates that we pre-train
topic models every 1, 2, 3, 4, and 5 levels, respectively. We report
the running time of learning topic models for the 100 random pairs
of region and timespan in Figure 7(a) and Figure 7(b) as we vary
the accuracy threshold.

Our proposed framework FFS is more than an order of magni-

tude faster than LDA and Online-LDA under different accuracy
thresholds because our proposed sampling algorithm can efficiently
combine two models without sampling all the word tokens. We also
observe that with a smaller accuracy threshold (smaller τe), the on-
line topic learning is slightly faster. With a lower accuracy thresh-
old, we learn more pre-trained models for large cells in an Octree.
Larger cells are more likely to cover most documents in the spec-
ified region and timespan, and thus reduce the time for combining
topic models.

Figure 8(a) and Figure 8(b) show the perplexity computed on the
test data for all methods. The perplexity of our proposed frame-
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Figure 15: Runtime w.r.t. Timespan Size
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Figure 16: Perplexity w.r.t. Timespan Size

work FFS is close to those of LDA and online-LDA because our
algorithm combines topic models with a bounded error. Benefit-
ing from the proposed partitioning method of Octree cells, FFS
achieves higher accuracy in most cases (lower perplexity) com-
pared with FFS-EQ.

Varying Space Threshold τs With a larger space threshold, we
have more space for pre-trained topic models, and thus we can con-
struct a deeper Octree. A large space threshold may help accelerate
the online learning process because we can learn more pre-trained
models in the Octree. As shown in Figure 9(a) and Figure 9(b),
FFS and FFS-EQ outperform LDA and online-LDA by more than
an order of magnitude. As shown in Figure 10(a) and Figure 10(b),
FFS has better accuracy than FFS-EQ in most cases.

Varying Number of topicsK The number of topicsK affects both
Octree based pre-computation and the running time of all methods
because they all have complexity linear to K. As shown in Figure
11(a) and Figure 11(b), all methods run slower as K increases.
The running time of our framework FFS increases a bit faster than
LDA and Online-LDA because the complexity of our framework
is quadratic to K. However, in practice K is often set to small
values. As shown in Figure 12(a) and Figure 12(b), the perplexity
increases when the number of K increases because there are more
parameters for topic models (φk). When the number of parameters
increases, the likelihood computed as the joint probability of word
tokens decreases.

6.4 Evaluation on Different Regions and Times-
pans

We also experiment on different user specified regions and times-
pans. All the parameters are set as default values except the space
threshold τs is set at 20000. Let the spatial area of the document
collection be A. We vary the size of regions with the following
values: 0.0001A, 0.001A, 0.01A, 0.1A while fixing the size of
timespans as 5 days on Twitter data and 300 days on Meetup data.
We randomly generate 100 pairs of region and timespan for each of
the four settings of region size. The efficiency results are shown in
Figure 13(a) and Figure 13(b), and the perplexity results are shown
in Figure 14(a) and Figure 14(b). As region size decreases, the run-
ning time decreases while the perplexity increases. The running
time of our algorithm is close to or even slightly higher than LDA
and online-LDA because when the region becomes smaller than the
leaf cell of the Octree, our framework is equivalent to LDA. The
perplexity of all methods decreases because the number of docu-
ments covered by the region increases. Without enough documents
(When region size is 0.0001A), each region contains only several
hundred or several thousand documents on average for both dataset,
the learnt LDA model is less effective on the hold-out test data.

We also vary the timespan by 5, 10, 15, 20 days on Twitter Data
and 300, 600, 900, 1200 days on Meetup data while fixing the size

of regions to 0.1A. For each of the timespan, we randomly generate
100 pairs of region and timespan. Figure 15(a) and Figure 15(b)
show the efficiency of all methods in different timespans, while
Figure 16(a) and Figure 16(b) show the perplexity. With a larger
timespan, more documents are included, and thus it takes longer to
process. The perplexity of FFS and FFS-EQ is similar to those of
LDA and online-LDA as shown in Figure 16(a).

7. CONCLUSIONS AND FUTURE WORK
We study the problem of mining topics from a collection of spatio-

temporal documents given a region and a time interval. Based on
the LDA model, we propose an algorithm with bounded errors to
combine two pre-trained topic models learnt from two document
sets, each falling in a region and a time period. We also propose a
method to build an Octree based indexing structure to facilitate our
online topic learning algorithm. We partition the Octree cells by
considering the word overlap of the generated cells to achieve bet-
ter accuracy for combining two pre-trained topic models. Then we
employ our proposed algorithms to combine the pre-trained topic
models to obtain the topics for documents in the specified region
and time period. Our experimental results suggest that our pro-
posed framework is able to improve the runtime performance by
at least an order of magnitude compared with LDA and online-
LDA. Meanwhile, the effectiveness of our proposal, measured by
perplexity, is close to that of LDA and online-LDA.

This work combines data management principles to improve the
efficiency of machine learning/data mining algorithms. This work
opens to a number of promising directions for future work. For
example, exploratory topic mining from spatio-temporal streams,
topic trends detection in a user specified region and timespan, and
extended TMRT query with keywords as another query dimension.
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APPENDIX
A. ADDITIONAL EXPERIMENTS

A.1 Evaluation on Wikipedia Data
Wikipedia contains 0.92 million geo-tagged pages, and each page

contains 221 words on average. We randomly hold out 20% words
of each document as documents in test data to evaluate the per-
plexity. Different from the two datasets in Section 6.1, Wikipedia
pages do not contain temporal information. We replace Octree with
Quadtree in our method to answer TMRT queries without timespan.
We compare FFS, Online-LDA, and LDA by varying the size of
query regions with the following values: 0.0001A, 0.001A, 0.01A,
0.1A, where A is the spatial area of the Wikipedia document col-
lection. We use the same parameter settings as in Section 6.4. The
experimental results are reported in Figure 17.

The three methods have similar efficiencies when the size of the
query regions is 0.0001A. However, as the size of the query re-
gions increases, FFS performs much faster than Online-LDA and
LDA, because more documents are covered in larger query region
and our proposed method can learn the topic models by combining
pre-trained models efficiently. FFS runs around an order of mag-
nitude faster than Online-LDA and LDA, while achieves similar
perplexity as the two methods.
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Figure 17: Runtime and Perplexity w.r.t. Region Size

A.2 Qualitative Evaluation on Extracted Top-
ics

To exemplify the extracted topics of the three methods, we sub-
mit a TMRT problem within the region of New York city and times-
pan from Sep 1, 2012 to Sep 30, 2012, as shown in Figure 18. We
apply FFS, LDA and Online-LDA to this TMRT problem using the
default parameter setting. The number of words is 637,581, we
run 1000 iterations of Gibbs sampling for the three methods. The
running time of FFS, LDA and Online-LDA are 104.96 seconds,
1586.14 seconds and 1776.38 seconds, respectively.

We randomly select three topics from LDA and find three topics
from the result of online-LDA and our proposed framework (FFS)
that are most similar to (measured by KL divergence) the three ones
of LDA, respectively. We manually name the extracted three top-
ics as “Photo Sharing”, “Politics” and “Celebration”, and visualize
them using “Word Cloud” in Figure 18.

Timespan: 
Sep 1, 2012 to Sep 30, 2012

FFS

OLDA

LDA

Photo 
Sharing Politics Celebration

Figure 18: Topics Extracted by Different Methods

In general, the topics extracted by the three methods are similar.
Surprisingly, our proposed framework can also discover some rep-
resentative words for a topic (e.g., “friend” in topic “Photo Sharing”
and “work”, “education” in topic “Politics”) that LDA and online-
LDA have not discovered. Consider the quality of extracted topics
and runtime efficiency, our proposed framework is more suitable to
solve the TMRT problem compared to LDA and online-LDA.


