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ABSTRACT
Microblogging services like Twitter contain abundant of user gen-
erated content covering a wide range of topics. Many of the tweets
can be associated to real-world entities for providing additional in-
formation for the latter. In this paper, we aim to associate tweets
that are semantically related to real-world locations or Points of In-
terest (POIs). Tweets contain dynamic and real-time information
while POIs contain relatively static information. The tweets as-
sociated with POIs provide complementary information for many
applications like opinion mining and POI recommendation; the as-
sociated POIs can also be used as POI tags in Twitter. We define
the research problem of annotating POIs with tweets and propose a
novel supervised Bayesian Model (sBM). The model takes into ac-
count the textual, spatial features and user behaviors together with
the supervised information of whether a tweet is POI-related. It
is able to capture user interests in latent regions for the prediction
of whether a tweet is POI-related and the association between the
tweet and its most semantically related POI. On tweets and POIs
collected for two cities (New York City and Singapore), we demon-
strate the effectiveness of our models against baseline methods.

1. INTRODUCTION
The prevalence of smartphones enables massive amount of data

being generated at unprecedented scale on various social media
platforms. On microblogging platforms like Twitter, users update
their status, comments on news events, and express their opinions
of products, services or locations, in an informal and casual man-
ner. The information contributed by users often covers a wide range
of topics. On the other hand, real-world entities have online pres-
ence on many social service platforms, such as Foursquare and
Google Maps. For instance, Foursquare hosts millions of points
of interest (POIs) and users’ check-in to these POIs. Many data
mining tasks have been conducted on the data from both platforms.
On Foursquare, there are studies on the properties of POIs, user
behaviours, and POI recommendations [12, 15, 17, 20, 24, 27]. On
Twitter, example studies include sentiment analysis, user mobil-
ity pattern analysis, and even POI recommendations based on geo-
tagged tweets (i.e., tweets associated with latitude/longitude coor-
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dinates) [1, 11, 12, 28]. However, the two kinds of interesting data
have been utilized separately in most studies, even for the same
tasks like POI recommendation.

We argue that the two types of data complement each other: POIs
contain static information, for example name, address, reviews and
tips. Tweets are posted in a dynamic way and contain real-time
information (e.g., the restaurant is holding a discount event). In this
research, we aim to annotate POIs with their relevant tweets based
on their semantic relatedness. For instance, if a tweet comments on
the service or hygiene standard of a restaurant, then we associate
the tweet and the restaurant.

Many applications could be greatly benefitted from such kind
of “data integration” from these two types of data. Tweets that
are associated with POIs become a complementary data source for
real-time event detection, opinion mining and sentiment analysis
of POIs. Twitter can also enhance user experiences by supporting
POI level geo-tags for tweets instead of coarse-grain location (e.g.,
city level). When a user posts a tweet, we provide user an option
to tag the tweet with the candidate POIs based on semantic relat-
edness. Map systems such as Google Maps also benefit from the
associations between tweets and POIs to support user exploration
over real-time information of a POI or a spatial region, for what is
happening about the POI or the region [6].

However, determining whether a tweet is semantically related to
a POI is challenging, given the volume and shortness of tweets,
and the large number of POIs at fine-grained level. Some propos-
als [3, 19, 22] assume that each geo-tagged tweet is associated to
a POI. However, not all geo-tagged tweets are necessarily POI-
related in terms of its semantic meaning. In our data collected from
Twitter, only 8%-10% of geo-tagged tweets are semantically re-
lated to POIs. To the best of our knowledge, no previous work
has studied the problem by considering the semantic relatedness
between geo-tagged tweets and POI. The challenges are two-fold.
On the one hand, because the coordinates provided by GPS devices
are often not precise, the nearest POI is not the true POI where the
tweet was posted in many cases. Only 51% and 17% POI-related
tweets were posted nearest to their POIs in our Singapore and New
York datasets, respectively. On the other hand, even if a tweet was
posted right at a particular POI, it remains hard to determine if the
content of the tweet is relevant to the POI. Note that this prob-
lem is different from the problem of inferring tweet location, e.g.,
the coordinates of tweets [1, 11, 23] or the city level location of
tweets [9, 16]. These studies assume that the coordinates of tweets
are unknown and aim at inferring the missing location information
for tweets. They complement our research as we target on the geo-
tagged tweets.

We develop two baseline solutions to the problem. The first so-
lution is to first identify candidate POIs which are geographically



close to a given tweet and then associate the tweet to the top-ranked
POIs based on their semantic relatedness. The semantic relatedness
can be computed by using the language model of the tweet and the
language model of a candidate POI. Alternatively, the tweets can
be firstly classified to be POI-related or non-POI-related. Then the
POI-related tweets are associated with POIs according to the dis-
tances between their language models. We name these two baseline
solutions RANK and CLASS, respectively. Both baseline solutions
fail in capturing user behaviour as well as the latent relations be-
tween textual content, coordinates, and users of the tweets.

In this paper, we propose a novel supervised Bayesian model
(sBM for short) which explores three aspects of the tweets: textual
content, coordinates, and user behaviours (user interests in latent
regions) under the supervised information of POI relatedness. The
proposed sBM model is able to capture user interests in latent re-
gions. Intuitively, the coordinates act as spatial filters to exclude
POIs that are far from a given tweet; the user behaviors provide
the user’s interests in some POIs or the types of the POIs to fur-
ther narrow the search space, and the textual content helps identify
the true POI in the small search space. Compared with the existing
geospatial topic models [11, 12, 15, 20, 25, 26, 28, 29], the novelty
of our model is two-fold. First, we add a relatedness response to
each document to determine whether a tweet is POI-related by con-
sidering the context (e.g., the number of words that are not related
to any POI, the distance from the tweet to its most semantically
related POI, and the region in which the tweet was posted). By
associating words and regions to the relatedness response, regions
and language models are better fit to solve the relatedness problem.
Second, we introduce a set of dummy POIs to model the location
of non-POI-related tweets. The dummy POIs benefit the model in
that we can model the POI-related and non-POI-related tweets in
a consistent manner. Moreover, dummy POIs themselves capture
spatial and textual information because each dummy POI has its
own language model and coordinates like real POI. In summary,
this paper makes the following contributions:

• We define the research problem of annotating POIs with geo-
tagged tweets.

• We develop two baseline solutions and propose a novel su-
pervised Bayesian model, which explores three aspects of
the tweets: textual content, coordinates, and user behaviours
under the supervised information.

• We conduct experiments on real word datasets and demon-
strate the effectiveness of the proposed model in annotating
POIs with geo-tagged tweets.

The rest of the paper is organized as follows. We survey the
related work in Section 2. In Section 3, we formulate the research
problem and present two baseline models. The supervised Bayesian
model is presented in Section 4. After reporting the experimental
results in Section 5, we conclude this paper in Section 6.

2. RELATED WORK
Location Identification: Most related to this work is location iden-
tification. We categorize the studies of location identification into
two types. The first type of studies aims to associate a POI to a
GPS record or geo-tagged post [19]. Lian et al. [19] extract sev-
eral features between a GPS record and a POI and apply them in
a learning-to-rank model, to select the most appropriate POI for
the GPS record. The extracted features include the popularity of
the POI, distance between the GPS record and the POI, frequently
check-in time slots of the POI, and the number of user check-ins at

the POI. Our problem is different from this type of studies in that
we need to identify the POI-related tweets from those that are not
related. That is, we consider the content of the tweets.

The second type of studies associate a POI to tweets or other
social media posts [9, 14, 16, 18]. Dalvi et al. [9] propose a proba-
bilistic model to infer the user’s location and match tweets to spatial
objects such as restaurants. They assume that each user has a loca-
tion which can be inferred from the user’s visit history. They then
use the inferred user location together with a language model to
identify the spatial object for a tweet. However, a user may travel
to many locations and have multiple activity regions in a city [8]. If
a tweet is posted at a “Starbucks” that is far from the inferred user
location, their model probably matches the tweet to a “Starbucks”
near the inferred user location. Moreover, as reported in their pa-
per, it is difficult to infer the accurate user location. A radius of 10
miles is therefore used to represent user’s location, which is too far
to help in identifying POIs in dense regions. Kinsella et al. [14]
propose to identify spatial objects for each tweet at different gran-
ularity levels, from country to zip code. They model each spatial
object using a language model and then compare with the language
model of the tweet to locate the most probable spatial object. Li et
al. [16] compute a coarse-grained user location at city level and aim
to disambiguate POIs with the same name but in different cities. Li
et al. [18] propose to combine the visual features and textual fea-
tures to infer the POI for an Instagram photo. This type of studies
assumes that tweets are not geo-tagged, and aim at inferring the
coordinate locations of tweets. In contrast, we consider geo-tagged
tweets and use them to annotate POIs. In fact, these proposals are
complementary to our work for tweets without geo-tags.

User Behavior Modeling: User behavior is an important factor
in associating POIs with geo-tagged tweets. If we know the pre-
ferred regions of a user and the popular POIs in those regions, we
can probably guess on which POI the user posted a tweet. Many
efforts have been done in modeling user behaviors in geographical
data [11,12,15,20,25,26,28,29]. Hong et al. [11] propose a genera-
tive model to analyze the geographical topics in geo-tagged tweets.
Kurashima et al. [15] and Hu et al. [12] study the user preference
on latent regions. Yuan et al. [28] explore personalized regions for
individuals and incorporate temporal information in modeling user
behaviors. Yin et al. [25,26] consider user interests over time. Most
of the existing proposals for user behavior modeling use Foursquare
check-ins data, and they assume that each post is related to POIs.
Our problem is different in that we have both POI related and un-
related tweets, and thus the existing user behaviour models are not
applicable to our problem because they always associate a tweet
with a POI. Moreover, we propose a supervised model while the
existing methods are unsupervised. Our supervised model intro-
duces a relatedness response and a set of dummy POIs to better fit
the POI annotation problem, which have not been explored in exist-
ing models. The detailed difference between our supervised model
to existing methods could be found in Section 4.1.

Other Related Work: Many pieces of research have been done in
finding the location of a Twitter user [2, 5, 7]. Amitay et al. [2] use
heuristic rules to infer user locations. Cheng et al. [7] and Chandra
et al. [5] propose probabilistic models to estimate the city level lo-
cation of a user. Identifying POIs for tweets is based on the limited
information of a single tweet, while identifying the location for a
user can be based on all her tweets.

3. ANNOTATING POIS WITH TWEETS
We formulate our problem in Section 3.1. Then, we discuss two

baseline solutions in Section 3.2.



3.1 Problem Formulation
Suppose we have a collection of historical records of tweets as-

sociated with their POIs, denoted by D = {d1, d2, ..., d|D|}. Each
historical record d is represented as a 4-tuple 〈ud, c̃dd,wd, ld〉,
where ud, c̃dd, wd are the user, coordinates, and the set of words
of tweet d, respectively, and ld represents the POI where the tweet
was posted or associated with. Attribute ld is NULL if the tweet is
not related to any POI. We also have a collection of POIs L =

l1, l2, ..., l|L| and each POI l is represented as a pair 〈c̃dl, tl〉,
where c̃dl, tl are the coordinates and the text context of the POI.
The text context contains the name of the POI as well as the tips
of the POI1. Given a new tweet 〈ud, c̃dd,wd〉, the POI annotation
problem is to EITHER return the top-1 POI that is relevant to the
tweet if it is POI-related, OR return no POI if it is not-POI-related.

3.2 Basic Solutions
This is a new research problem and there is no existing solutions.

Since we have both POI related and unrelated tweets, directly anno-
tating the top-ranked POI to each tweet only according to distance
or text similarity performs bad in our experiments. Hence, we pro-
pose two basic solutions based on both spatial and textual informa-
tion. The first one is a ranking based model which combines a spa-
tial filter and a ranking component based on language models. The
second one solves the problem in two steps: First, we classify the
tweets into two classes, namely POI-related and non-POI-related;
Second, a ranking model is used to map a POI-related tweet to a
POI based on both the language model and spatial distance. The
two models are named as RANK and CLASS, respectively.

RANK: Intuitively, if a tweet is posted at a POI, the coordinates
of the tweet and the POI should be close to each other. Note that
their coordinates are seldom the same because of the accuracy of
GPS devices and the spatial region of a POI (which may not be a
single coordinate point). The idea of RANK is to apply a spatial
filter to restrict the search area for a tweet to be associated, and
then to map the tweet to a POI in the restricted area. Suppose we
restrict the search space within a small range of nearby POIs (e.g.,
100 meters) centered at the tweet’s coordinate. The next problem
is to find out whether any POI in the search space is semantically
close to the tweet. More specifically, let Ld,m be the set of POIs
within m meters of tweet d, and P (w|l), P (w|d) be the language
models of POI l and tweet d, respectively. The language model for
a POI l is computed by counting the words in the text context of
the POI (i.e., tl), and the words in the historical tweets posted in
the POI i.e., ∪{wd|ld = l}.

RANK associates tweet d to a POI l ∈ Ld,m that achieves the
highest likelihood of the tweet as follows:

argmax
l∈Ld,m

∏
w∈wd

P (w|l).

Note that, this ranking mechanism will associate a geo-tagged
tweet to a POI even though it is non-POI-related. To solve this
problem, we add a dummy POI which stands for “Non-POI”, and
build a location independent language model for it using all non-
POI-related tweets in the training set. We rank all the POIs together
with the dummy POI and pick the top-1 result. If the dummy POI is
the top-1 result, then the tweet is considered to be non-POI-related.

CLASS: This method first classifies the tweets into POI-related or
non-POI-related, and then maps POI-related tweets to their corre-
sponding POIs based on the combination of a distance model and

1The name and tips are collected from Foursquare in our work.

a language model. To classify tweets into the two classes, we use
the words in the training tweets as features to learn a linear Support
Vector Machine (SVM).2

If a tweet is POI-related, the next problem is to map the tweet to
its POI. We develop a ranking model which comprises a distance
model and a language model to identify the POI for POI-related
tweet d. The distance model is used to constrain the POI to be
close to the tweet. To this end, we use a zero-mean normal distri-
bution to model the probability of observing POI l given tweet d
in spatial within an error tolerance σ2, i.e., dist(d, l) ∼ N (0, σ2).
The variance σ2 can be learnt on the history tweets using the maxi-
mum likelihood principle. The language model is built in the same
way as we do for RANK. The top-1 ranked POI for tweet d is based
on the overall ranking score computed by:

Score(d, l) ∝ exp{−dist(d, l)
2

2σ2
} ×

∏
w∈wd

P (w|l).

Expanded CLASS: We now expand the CLASS model by incor-
porating region information in the classification. This model is
named CLASS-R. Specifically, we first use k-means clustering to
group the training tweets to R regions and assign the closest re-
gion to each tweet. Then, we compute the probability of post-
ing POI related tweets p(d ∈ D+|r) in each region r, and the
probability for a user u to posting tweets in each region p(r|u),
where D+ is the set of POI-related tweets. We use the probability
p(d ∈ D+|u) =

∑
p(d ∈ D+|r)p(r|d) as region features, and

thus we have R region features for each tweet. For training tweets,
we set p(r|d) = 1 if r is assigned to tweet d; otherwise we set it
at 0. For test tweets, we set p(r|d) = p(r|ud) for each region to
smooth the region features using the user’s interests to regions.

For the ranker, we use two alternative ranking models. One of
them is a learning-to-rank approach proposed by Lian et al. [19],
and the other is a geographical topic model proposed by Yuan et
al. [28]. In the learning-to-rank method, the following features are
used: 1) number of check-ins at a POI; 2) check-in time of the POI;
3) the check-ins of a user at the POI; 4) the distance between the
POI and the tweet; and 5) text similarity between the POI and the
tweet. We name the learning-to-rank method as CLASS-LR and
the geographical topic model as CLASS-W4, based on the classi-
fication results of CLASS. We also name the two ranking methods
based on the results of CLASS-R as CLASS-R-LR and CLASS-R-
W4, respectively.

4. SUPERVISED BAYESIAN MODEL
We now discuss the motivations of building a supervised Bayesian

model for the proposed problem and present the generative story of
our model. Then, we present the method for estimating model pa-
rameters. Our model is further enhanced by incorporating external
textual content of the locations, i.e., Foursquare tips.

4.1 Motivation & Novelty
Both baselines presented in Section 3.2 cannot capture the rela-

tionships among variables. Next, we illustrate two example rela-
tionships and more relationships are presented as Intuitions in Sec-
tion 4.2. For instance, there should be relations between mapping a
tweet to a POI and determining its POI-relatedness. If we know that
a tweet was probably posted at a bakery, then by comparing the lo-
cation and language models of the tweet and the bakery, it is easier
to tell whether the tweet is POI-related. There also should be rela-
tions among user, region and POI-relatedness. Some regions (e.g.,

2We have also tried other classifiers and SVM performed the best in our experiments.



Times Square), may have more POI-related tweets than other re-
gions. If a user often visits POIs at Times Square, the tweets posted
by the user at Times Square are more likely to be POI-related.

To better capture the relations among variables (e.g., text, re-
gion, user, location, and POI-relatedness), we develop a novel su-
pervised Bayesian model. Compared with the existing geograph-
ical topic models [11, 12, 15, 28, 29], the novelty of our model is
two-fold. First, we add a relatedness response to each tweet in our
supervised model to determine whether the tweet is POI-related by
considering the current context. The context includes 1) the num-
ber of words that are not related to any POI; 2) the distance from
the tweet to its most semantically related POI; and 3) the latent re-
gion in which the tweet was posted. By jointly modeling words and
latent regions with the relatedness response, we are able to find bet-
ter latent regions and language models for solving the relatedness
problem. Second, we introduce a set of dummy POIs to model the
location of tweets that are not related to any POI. The dummy POIs
benefit the model in that we can model the two types of tweets in a
consistent way because the non-POI-related tweets can now be as-
signed to a “dummy POI”. Moreover, each dummy POI has its own
language model and coordinates like real POI, capturing semantic
and geographical information. Such information makes it possi-
ble to analyze the language models and popularity (in regions) of
dummy POIs. To the best of our knowledge, the existing geograph-
ical topic models are all unsupervised, and none of them exploits
the two novel aspects.

Our model works as follows. When judging whether a tweet
is POI-related, the model first estimates the most probable POI (in-
cluding dummy POIs), and then computes the relatedness response.
If the tweet is POI-related, the candidate POIs are ranked based on
their textual and spatial information, and the joint probability of the
tweet being POI-related and posted at each POI.

Compared with supervised LDA [4], our model associates sev-
eral features in different scopes to the response including propor-
tion of POI-related words in the scope of word tokens, geographical
distance and latent region in the scope of document. We design a
feature vector that contains different scopes of features for each
tweet and the feature vector affects the training of both textual and
geographical aspects of the model. Supervised LDA uses average
topic assignments of a document as features for regression and does
not consider different types of features.

4.2 Generative Story for Tweets
The supervised Bayesian model for annotating POIs with tweets

are built according to the following intuitions.

Intuition 1: A user u may post geo-tagged tweets in some pre-
ferred latent regions, e.g., shopping streets, sightseeing areas. Each
region contains a set of nearby POIs. User interests in regions can
be described by a categorical distribution p(r|u).

Intuition 2: To visit a POI in a region, user would consider both its
popularity and distance. For a region r, we use a popularity distri-
bution p(l|r) and a bivariate Gaussian distribution over coordinates
p(c̃dl|r) to depict the two factors, respectively.

Intuition 3: A tweet may or may not be related to a POI. For POI-
related tweets, the location and text are determined by the POI
where they were posted. For daily conversational tweets that are
not related to any POI, we can imagine that their location and text
are determined by some dummy POIs that do not exist in the real
world. We introduce a set of dummy POIs L′ to model such tweets.

Intuition 4: In a POI-related tweet, users tend to use words related
to the POI other than general words. That is, if the tweet is POI-
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Figure 1: Supervised Bayesian Model for POI Annotation

related, the user may select words from both the word distribution
of the POI p(w|ηl) and background word (e.g., I, like) distribution
p(w|η0). If the tweet is non-POI-related, the user may select words
from the word distribution of a dummy POI and the background
word distribution.

Intuition 5: If a tweet is POI-related, it is likely that the tweet is
close to the POI where it was posted, and the text of the tweet is
related to its POI. Moreover, if a tweet is posted in a region that
has many attractions, e.g., sight seeing spots, restaurants, etc., it
would be more likely to be POI-related other than tweets posted
in regions that have fewer attractions. We use x̄d to describe the
portion of words that are related to the tweet’s POI in tweet d, and
dist(d, ld) to denote the surface distance between tweet d and its
POI ld. For each region, we use c̄r , which is the average count
of POI-related tweets in region r against non-POI-related tweets to
denote the probability of posting POI-related tweets in that region.
LetR be the total number of latent regions, we haveR+ 2 features
to determine whether a tweet is POI-related or not.

With the above intuitions, we proceed to describe the generative
process of the proposed sBM model. For convenience, we show the
graphical representation of the model in Figure 1 and summarize
the notations in Table 1.

To generate a geo-tagged tweet, a user first visits a region r ac-
cording to a multinomial distribution over user’s interestsMulti(θu).
Then, the user randomly chooses a POI (which can be a dummy
POI) to visit according to 1) a multinomial distribution Multi(φr)
over its popularity in region r; and 2) a bi-variate Gaussian distri-
bution N (µr,Σr). When the user compose the tweet, she would
choose words either from the language model ηl of the POI (in-
cluding dummy POIs) or from a background language model η0.
We introduce a latent variable x for each word token in a tweet
to identify from which language model the word is selected from.
More precisely, if x = 1, the user selects the word from the lan-
guage model of the POI (including dummy POIs). If x = 0, the
user selects the word from the background language model. The
coordinates of the tweet are generated according to a Gaussian dis-
tributionN (c̃dl, σ

2
l ) with error σ2

l .
Now we come to the supervised part of our model. The label y,

indicating whether a tweet is POI-related, comes from a linear re-
gression model. The covariates (features) of the regression model



Table 1: Summary of notations
Notation Description
Du the set of tweets posted by user u
θu the region interests of user u
rd latent region of tweet d
φr the POI popularity in region r
c̃dl, σ2

l the location and variance in coordinates system of
POI l

µr , Σr the mean and variance in coordinates system of re-
gion r

η0 background word distribution
ηl word distribution for POI l
x(d,n) the switch of selecting word (d, n) from either back-

ground or POI language models
c̃dd the coordinates of tweet d
κd distribution of switch for document d
ω the weights for the regression of POI-relatedness
σ2 the variance of POI-relatedness

comprise the portion of POI-related words x̄d, the distance between
the tweet and the POI dist(d, ld), and the popularity of real POIs
in the region c̄r . These covariates comprise vector z̄d, which is a
R+3 dimensional vector that comprises a constant 1 and theR+2
features, i.e., z̄d = 〈1, x̄d,dist(d, ld), c̄1, . . . , c̄R〉. The regres-
sion coefficients on these covariates comprises vector ω, which is
a R + 3 dimensional vector containing the weights to the R + 2
features, i.e., ω1, ..., ωR+2 and the bias ω0. We generate a label y
according to a normal distributionN (ωT z̄d, σ

2) with variance σ2.
The generative process are summarized as follows.

• For each user u,
– Draw a region preference distribution θu ∼ Dir(α)

• For each region r,
– Draw a POI distribution φr ∼ Dir(γ)

• For each POI l including dummy POI,
– Draw a word distribution ηl ∼ Dir(β)

• Draw a background word distribution η0 ∼ Dir(β0)

• For each tweet d posted by user u,
– Draw a switch distribution κd ∼ Beta(ρ)
– Draw a region rd ∼Multi(θu)

– Draw a POI ld ∼Multi(φr)×N (c̃dl|µr,Σr)

– Draw coordinates c̃dd ∼ N (c̃dld , σ
2
l )

– For each word position n in d,
∗ Draw a switch x(d,n) ∼ Binomial(κd)
∗ If x = 1, draw a word w(d,n) ∼Multi(ηld)
∗ If x = 0, draw a word w(d,n) ∼Multi(η0).

– Draw y ∼ N (ωT z̄d, σ
2)

4.3 Parameter Inference
An open problem is how to determine the locations of dummy

POIs in order to generate the coordinates of non-POI-related tweets
from a Gaussian distribution (N (c̃dld , σ

2
l )). It is possible to learn

the locations of dummy POIs together with the other parameters
in the model. However, by considering that 1) it could be time-
consuming when the number of dummy POIs becomes large and
2) the locations of dummy POIs do not affect the model much be-
cause they have no exact geographical meanings, we adopt an ap-
proximate strategy to compute the Gaussian distribution for dummy
POIs. Suppose we need to generate a set of dummy POIs with size

|L′|, our goal is to divide the non-POI-related tweets into |L′| sub-
sets, such that the tweets are equally distributed in these subsets,
and the POIs in each subset are geographically close to each other.
This is because we want to avoid the extreme case that a large num-
ber of tweets are assigned to very few dummy POIs. Specifically,
we iteratively divide the coordinates space into four equal-sized
cells and build a Quadtree [21]. In each iteration, we divide the
cell with largest number of tweets in the Quadtree. The dividing
process stops when we have more than |L′| leaf cells each contains
a reasonable number of tweets (e.g., at least 100 tweets). Then, we
pick the top |L′| leaf cells with largest number of tweets as dummy
POIs. The coordinates of a dummy POI is computed by averaging
the coordinates of its tweets. Finally, the tweets that are not located
in any of the top |L′| cells are assigned their closet dummy POIs.
The error σl of each POI including dummy POIs is then computed
by regression:

σ2
l =

1

|Dl| − 1

∑
d∈Dl

||c̃dd − c̃dl||2, (1)

where Dl is the set of tweets assigned to POI l.
With the known Gaussian distributions of POIs and dummy POIs,

the inference problem becomes to compute the other parameters by
maximizing the corpus level likelihood. The likelihood of generat-
ing the corpus D using our model with the set of parameters Φ is
computed by:

P (D|Φ) = P (yd|z̄d)
∏
d

P (rd|u)P (ld|rd)P (c̃dl|rd)P (c̃dd|ld)

×
∏
d

∏
n

P (wd,n|xd,n, η0, ηld)P (xd,n|κd), (2)

P (wd,n|xd,n, η0, ηld) =

{
P (wd,n|η0) if xd,n = 0

P (wd,n|ηld) if xd,n = 1.
(3)

Estimating the parameters by maximizing the likelihood is intractable.
We therefore develop a two-step learning algorithm combining Gibbs
sampling and Expectation-Maximization algorithm to estimate the
parameters.

Expectation: We approximate the posterior distribution of latent
variables x and r given other variables using collapsed Gibbs sam-
pling. With each x and r known, the Gaussian parameters µr , Σr
and the regression parameters ω and σ2 are updated in the maxi-
mization step. The Gibbs samplers for latent variable x and r are
derived as in Eq. (4) and Eq. (5) (Equations are listed on the next
page).

The variable cx,−(d,n)
l,v in Eq. (4) is the count of assigning x to

the word v in the tweets posted in POI l, excluding the assignment
for the n-th word in document d. We use ∗ to denote ANY. For
example, cx,−(d,n)

∗,v stands for the count of assigning x to the word
v in the tweets posted in ANY POI, excluding the n-th word in
document d. Similarly, the variable cr,−du,l in Eq. (5) is the count of
assigning r to the tweets that posted by user u at POI l, excluding
the assignment in document d.

Maximization: We update the Gaussian parameters µr , Σr and the
regression parametersω, σ2 by maximizing the likelihood given the
samples of x and r. Let Dr be the set of tweets that are assigned
to region r, and c̃dld be the coordinates of the POI ld associated
with tweet d. The update functions of the Gaussian parameters are



P (x(d,n) = 0|X−(d,n), D) ∝ (c
0,−(d,n)
∗,∗,d + α)

c
0,−(d,n)
∗,wd,n,∗ + βwd,n∑
v c

0,−(d,n)
∗,v,∗ + βv

× 1√
2πσ2

exp{− (yd − ωT z̄d)2

2σ2
}

P (x(d,n) = 1|X−(d,n), D) ∝ (c
1,−(d,n)
∗,∗,d + α)

c
1,−(d,n)
ld,wd,n,∗ + βwd,n∑
v c

1,−(d,n)
ld,v,∗ + βv

× 1√
2πσ2

exp{− (yd − ωT z̄d)2

2σ2
} (4)

P (rd = r|R−d, D) ∝ (cr,−dud,∗ + α)
cr,−d∗,ld + γld∑
l c
r,−d
∗,l + γl

× |Σr|−
1
2 exp{(c̃dd − µr)TΣ−1

r (c̃dd − µr)} (5)

P (ld = l|ud, c̃dd,wd) ∝ P (l, c̃dd,wd|ud) = P (c̃dd|l)
∑
r

φr,lθud,rP (c̃dl|r)
∏
n

κdη0,wd,n + (1− κd)ηl,wd,n . (6)

computed as in Eq. (7) and Eq. (8).

µr =
1

|Dr|
∑
d∈Dr

c̃dld (7)

Σr =
1

|Dr|
∑
d∈Dr

(c̃dld − µr)(c̃dld − µr)
T . (8)

We update the regression parameters by computing z̄d for each
tweet d using the samples of POI-relatedness indicator x for each
word, and region r. Specifically, we set x̄d by computing the pro-
portion of words that are POI-related. For the region features, since
we know the region of a tweet is rd by sampling, we set the value of
the rd-th region feature in z̄d to c̄rd , the proportion of POI-related
tweets in region rd, and set the values of other regions to 0. Let Z̄
be the a |D| × (R + 3) matrix in which each row is z̄d for a tweet
d, the regression parameters are updated in Eq. (9) and Eq. (10).

ω ← (Z̄T Z̄)−1Z̄T y (9)

σ2 ← 1

|D| (y
T y − yT Z̄(Z̄T Z̄)−1Z̄T y) (10)

The expectation step and maximization step are repeated until
the likelihood converges. The latent variables can be efficiently
sampled. Sampling x and r only needs to scan the tweet setD once
and thus the complexity of sampling is O(|W |+R|D|), where W
is all word tokens in D andR is the number of regions. The update
of parameters µr and σr has a summation on D and thus the com-
plexity is O(R|D|). For the update of regression parameters ω and
σ2, the most time consumption part is the matrix multiplication of
Z̄T Z̄ and its inversion. The complexity of updating the regression
parameters is O(R2|D|+R3). Suppose we run I iterations for the
estimation process, the overall complexity of the learning process
is O(I(|W |+R2|D|+R3)).

4.4 Prediction for New Tweets
After learning the parameters, the POI of a tweet is predicted by

the model in two steps. Given a new tweet d = 〈ud, c̃dd,wd〉, the
POI-relatedness yd is first predicted and then the POIs are ranked
according to the joint probability P (yd = 1, ld = l|ud, c̃dd,wd).

POI-Relatedness: In this step, we first compute the probability
P (ld = l|ud, c̃dd,wd) as in Eq. (6) to guess the most probable
POI (including dummy POIs) for the tweet. The corresponding
yd = ωT z̄d is then computed to determine whether the tweet is
POI-related. If y>0, we classify the tweet as POI-related.

In Eq. (6), the estimation of variable κd is intractable. A col-
lapsed Gibbs sampler similar to Eq. (4) is used here without involv-
ing the POI-relatedness label y. Specifically, we infer the following

Gibbs sampler to sample the indicator xn for each word wd,n:

P (x(d,n) = 0|Xnew
−(d,n), η0) ∝ (c

0,−(d,n)
∗,∗,d + α)× η0,wd,n

P (x(d,n) = 1|Xnew
−(d,n), ηl) ∝ (c

1,−(d,n)
∗,∗,d + α)× ηl,wd,n ,

(11)

where Xnew
−(d,n) is the set of assignments of x for word tokens in

the new document, and η are the language models learnt from the
training process. Other variables are defined in the same way as in
the training process. After sampling x for each word, we compute

κd as
∑Nd

n=0 I(xn=1)+ρ

Nd+2ρ
, where I(·) is an indicator function, Nd is

the total number of words in tweet d, and ρ is used for smoothing.

POI Ranking: When a tweet is POI-related or yd > 0, we com-
pute the most probable real POI for the tweet by considering two
factors. One is the posterior probability of the POI given in Eq.
(6), the other is the probability of observing the POI-relatedness la-
bel yd = 1 given the POI l. In other words, we rank all the POIs
in the descending order of the joint probability P (yd = 1, ld =

l|ud, c̃dd,wd) = P (yd = 1|z̄d,l)P (l|ud, c̃dd,wd) and then re-
turn the top-1 ranked POI for the given tweet. The vector z̄d,l is the
feature vector when we assign POI l to tweet d.

4.5 Incorporating Tips
Because a tweet has a limit of 140 characters, and if a POI has

very few posted tweets, the language model built for the POI would
be extremely sparse. With the sparse language model, it is difficult
to correctly judge whether a tweet is related to the POIs. However,
we can make use of the external context for POIs. Example ex-
ternal context could be Foursquare tips, Yelp reviews, etc. In this
paper, we focus on making use of Foursquare tips, but the model
can accommodate other text resources.

Suppose we are given a set of tips Dt for all POIs. Each tip is
represented as a pair of a POI l and a set of words w, i.e., 〈l,w〉,
where l is the POI of the tip, and w is the words of the tip. By
observing that the proportion of background words used in tips
and tweets are different, we use different distributions of drawing
a switch variable (κ) for the two sources. We build a generative
model with switch variable κ for the tips, and then use the learnt
language model for each POI and background language model as
prior for the language models in the supervised Bayesian model.
Specifically, for each word in a tip, we first draw a switch variable
x, then we draw the word from the language model of the POI if
x = 1, otherwise we draw the word from the background language
model. We apply Gibbs sampling to learn the language models
from tips. Suppose the count of assigning a word v to a POI l in
tips is ctipsl,v , we substitute the new prior β′lv = ctipsl,v + βv in Eq.
(4) to learn the model presented in Section 4.2.



5. EXPERIMENTS
We show the effectiveness of the proposed supervised Bayesian

model (sBM) by experimenting on two real world datasets. We
first discuss the experimental setup, including the dataset prepara-
tion and performance measures. Then we set the parameters, e.g.,
the number of dummy POIs and the number of latent regions, by
empirically studying on a validation dataset. Finally, we compare
the performance of sBM with baseline methods, and conduct an
empirical study on the regions learnt by the model.

5.1 Experimental Setup
Dataset: We collect English tweets for experiments using Twit-
ter API3 in two cities: New York city (NYC) and Singapore (SG).
Specifically, a random sample of geo-tagged tweets posted by 2,393
users in New York city were collected from September 2010 to Jan-
uary 2015. For Singapore, a random sample of geo-tagged tweets
from 9,978 users were collected from March 2014 to August 2014.
The POIs from both cities together with their tips were collected
using Foursquare API. In the rest of the paper, we use NYC and
SG for the abbreviations of the two datasets for simplicity.

From each of the two cities, we randomly selected some tweets
and asked three annotators to annotate whether a tweet is POI-
related. The groundtruth label is based on majority voting from
the three annotators. Another annotator is then engaged to asso-
ciate the POI-related tweets to their nearby POIs. Finally, we ob-
tained 4,827 and 5,827 geo-tagged tweets with groundtruth labels
for model validation and evaluation, for the two cities, respectively.

In order to acquire a much larger dataset for training the models,
we approximate the groundtruth for training using the following
rule-based strategy. When a user checks in a POI in Foursquare,
there is an option to share the check-in on Twitter as a check-in
tweet. Similarly, Instagram also allows users to share their posts on
Twitter. We consider as positive samples the Foursquare check-in
tweets, and the tweets shared through Instagram and are associated
with POIs. The remaining tweets that do not satisfy these condi-
tions are considered as negative samples. This treatment results in
more than 210 thousands training tweets for the NYC dataset, and
380 thousands of training tweets for the SG dataset. The detailed
statistics of the two datasets are reported in Table 2.

Evaluation Measures: To evaluate the performance of our mod-
els, we adopt the measures that are similar to precision and recall.
The difference is that we have two levels of predictions here, i.e.,
whether a tweet is POI-related, and whether a POI-related tweet
is correctly associated with its groundtruth POI. Only when the
groundtruth POI is correctly predicted for a POI-related tweet, the
prediction is considered to be true positive.

Let TP be the number of true positive, TPR be the number of
times we classify a tweet as POI-related, FP be the number of
times we incorrectly associate any POI to a non-POI-related tweet,
FN be the number of times we predict NULL for a POI-related
tweet, and TN be the number of times we predict NULL for a
non-POI-related tweet.

The precision and recall are computed as:

Precision =
TP

TPR + FP
, Recall =

TP

TPR + FN
.

We can also evaluate a model for its ability of judging whether a
tweet is POI-related or not, using similar measures. To distinguish
from the above precision and recall, we call them relatedness preci-
sion and relatedness recall (or R-Precision and R-Recall for short).

3https://dev.twitter.com/rest/public

These two measures are computed as:

R-Precision =
TPR

TPR + FP
, R-Recall =

TPR
TPR + FN

.

Since there is a trade-off between precision and recall, we also
compute the F1 score for the two sets of measures, i.e.,

F1 =
2 · Precision · Recall
Precision + Recall

.

We use F1 and R-F1 to denote the F1 scores computed from the
two sets of Precision and Recall, respectively.

Methods to Compare: We compare our model (sBM) with the
two baseline methods (i.e., RANK and CLASS) discussed in Sec-
tion 3.2. We also implemented the learning-to-rank model and the
geographical topic model W4 for comparison. In total, 9 methods
are evaluated in our experiments, summarized in Table 3.

The parameters of all methods are set at the best value in terms
of F1 score on the validation set. For RANK, we tried the distance
threshold from 50, 100, 200 and 500 meters, and then select 100
meters, which performed best in terms of F1 score on both datasets.
Smaller threshold (e.g., 50 meters) results in low recall because
the related POI may be filtered out, while larger value (e.g., 200
meters) introduces more POIs to rank and thus may decrease the
precision. For W4, the number of topics are set at 100 and the
number of personalized regions is set at 2. The classifiers in both
CLASS and CLASS-R are implemented using Liblinear [10]. The
learning-to-rank model was implemented using SVMrank [13].

5.2 Parameter Selection
We have two parameters for tuning in the supervised Bayesian

model. One is the number of dummy POIs, and the other is the
number of latent regions. We first investigate the effect of dummy
POIs by fixing the number of latent regions. Then we fix the num-
ber of dummy POIs and select the number of latent regions.

Setting the Number of Dummy POIs: We fix the number of re-
gions to 50. Figure 2 plots the precision, recall and F1 by vary-
ing the number of dummy POIs from 10 to 10,000 on the valida-
tion sets of the two cities, NYC and SG. Note that, the x-axis is
in log-scale. Observe from the figures, the varying of the num-
ber of dummy POIs does not affect the F1 score much. On the
NYC dataset, the performance slightly increases as the number of
dummy POIs increases. On the SG dataset, when the number of
dummy POIs increases to 10,000, precision increases significantly,
with degradation in recall values. The increase in the number of
dummy POIs leads to decrease of the distance from an arbitrary
tweet to a dummy POI. As the result, the probability for assigning
a tweet to a dummy POI increases, thus leading to the increase in
the probability of classifying a tweet as non-POI-related.

Considering the changes in precision, recall, and F1, we set the
number of dummy POIs to 10,000 on both datasets.

Setting the Number of Regions: With the number of dummy POIs
fixed in both datasets, we investigate the effect of the number of
latent regions. The precision, recall and F1 by setting different
numbers of regions are reported in Figure 3 on both datasets.

On the SG dataset, the precision increases and reaches its best
value when the number of regions increases to 30. The precision
becomes stable for larger number of regions. On the other hand,
the recall decreases slightly as the number of regions increases.
The precision increases because each region captures more detailed
information, i.e., user interests and language models. The recall
decreases because it is more likely to classify a tweet to non-POI-
related because of the increasing number of specific regions.



Table 2: Statistics of the two datasets
New York city Singapore

# users 2,393 9,978
# POIs 482,480 321,985
# tweets (train validation test) 212,954 2,429 2,398 385,270 2,926 2,901
# POI-related tweets (train validation test) 43,010 474 559 29,290 221 289
# tips per POI 2.38 1.40
Vocabulary size 332,369 111,415

Table 3: Summary of the 9 methods evaluated in our experiments
Method Description Features used

User Preference Latent Regions
RANK RANK model with distance threshold = 100 meters - -
CLASS CLASS model - -
CLASS-R CLASS model enhanced by regions - X
CLASS-W4 CLASS model + geographical topic model W4 X X
CLASS-R-W4 CLASS-R model + geographical topic model W4 X X
CLASS-LR CLASS model + learning-to-rank X -
CLASS-R-LR CLASS-R model + learning-to-rank X X
sBM-T supervised Bayesian model without using tips X X
sBM supervised Bayesian model X X

On the NYC dataset, both precision and recall are poor when
the number of regions is fewer than 30. One possible reason is
that the POI-related tweets are distributed in many regions. When
the number of regions is small, the regions learnt are too large to
capture local information. When the number of regions is larger
than 30, the model gets stable.

Based on the observations made from Figure 3, we set the num-
ber of regions at 30 on both datasets.

5.3 Overall Performance
We now compare the overall performance of the 9 methods listed

in Table 3. For sBM, all the parameters are set as described in
Section 5.1. The number of regions in CLASS-R is set to the same
number as the supervised Bayesian model. We train sBM on a
single machine with Intel Xeon E5-1620 CPU and 16 GB RAM
and it takes 21 minutes and 42 minutes for training on NYC and
SG datasets, respectively. We run the 9 methods on the test set
and evaluate the results using precision, recall, and F1 score. The
performance of all methods are reported in Figure 4.

As shown in Figure 4(c), sBM-T and sBM significantly outper-
forms the other models. Specifically, sBM improves the F1 score
of the second best solution CLASS-LR by 28.3% on the NYC data
and outperforms the second best solution RANK by 20.4% on the
SG data. Moreover, sBM consistently performs better than sBM-T
on both datasets because it considers tips as external information.

RANK achieves considerable precision on the NYC dataset be-
cause the distance threshold reduces the search space. However, the
recall is low because the threshold also excludes the correct POI in
many cases. RANK achieves considerable recall but low precision
on the SG dataset as the POIs are much denser in Singapore. This
result suggests that a simple language model cannot distinguish the
similar POIs within the search space.

CLASS performs worse than RANK in most cases because the
distance model in CLASS is less effective in eliminating the POIs
that are not related to the tweet. CLASS-R performs better on the
SG dataset but worse on the NYC data. It has low recall because the
regions in New York city are more diverse than those in Singapore,
and the regions learnt by simple clustering algorithm do not well fit
the POI-relatedness problem.

CLASS-W4 and CLASS-R-W4 perform worst because 1) the

W4 model does not model the relation between word and POI; and
2) the number of POI-related tweets takes a small portion of all
tweets in our problem. The W4 model designed for POI-related
tweets cannot leverage all the tweets to learn the user mobilities.

CLASS-LR and CLASS-R-LR both outperform their counter-
parts i.e., CLASS and CLASS-R, respectively. CLASS-R-LR achieves
even higher precision than sBM. One possible reason is that it uses
more features to identify the correct POI for a tweet. The region
features in CLASS-R and CLASS-R-LR are helpful to increase
the precision, but result in lower recall compared to CLASS and
CLASS-LR. This is because the region features are used to filter
more POIs that may not be related to the tweet.

Our proposed supervised Bayesian model captures the relations
between relatedness response and other variables, and user interests
on regions. Thus, the model is more likely to infer the correct POI
for POI-related tweets, and thus can achieve higher accuracy.

5.4 Performance of POI-Relatedness Problem
Because the learning-to-rank baselines use the same classifier as

CLASS and CLASS-R for the POI-relatedness problem, we com-
pare our model sBM with the other three methods RANK, CLASS,
and CLASS-R. The results of the POI-relatedness problem are eval-
uated by R-Precision, R-Recall and R-F1, see Figure 5.

Observe from Figure 5, sBM outperforms CLASS by 29.1% on
the NYC dataset and outperforms CLASS-R by 6% on the SG
dataset. As discussed in the previous subsection, the CLASS-R
performs worse on the NYC dataset because of the simple cluster-
ing algorithm used. Compared to CLASS, the regions even bring
adverse impact on its performance. However, the method works
well on the SG data because POI-related tweets in Singapore is rel-
atively densely distributed.

Benefiting from the relatedness response and dummy POIs, sBM
better fits latent regions for the relatedness problem. Because the
relatedness response drives the distribution of POI-related tweets
to be identical in different regions, i.e., some regions could be
more likely to have POI-related tweets while others tend to include
tweets that are not related to POIs.

5.5 Empirical Study on Latent Regions
In this subsection, we compare the regions learnt by sBM and
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Figure 2: Effects of the number of dummy POIs (fixing the number of latent regions at 50)
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Figure 3: Effects of the number of Latent Regions (fixing the number of dummy POIs to be 10,000)
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Figure 4: Precision, Recall, and F1 of all the 9 methods, on the two datasets NYC and SG

those learnt by k-means algorithm to demonstrate the effect of the
relatedness response on regions. Specifically, we randomly pick
two of the 30 regions learnt by our sBM model in each dataset. One
of them has positive weight ω2+r in the regression, while the other
one has negative weight. Note that, positive weight indicates that
the tweets posted in the region are more likely to be POI-related.
For convenience, we call the former as positive region and the latter
as negative region. To draw the boundary of a region on a map, we
compute the contour line of its bivariate Gaussian distribution at
confidence level 0.95. For k-means algorithm, we first assign each
training tweet a cluster. Then, for each cluster, we use its containing
tweets to estimate the bivariate Gaussian distribution for it. We
select the two regions that are closest to the two regions learnt by
sBM, respectively. The regions learnt by the two methods and the
tweets in the two datasets are plotted in Figure 6.

In Figure 6, blue points indicate the non-POI-related tweets, and
red points indicate the POI-related tweets. Positive regions are plot-
ted in green color, while negative regions are plotted in yellow. In
the example of New York city, sBM learns tighter positive region
and the positive region has more POI-related tweets. On the other
hand, sBM learns a negative region with fewer POI-related tweets.
Similar observations are made on Singapore data. This is because

the relatedness response affects the learning of latent regions. It
learns regions that are fit to the POI relatedness problem.

6. CONCLUSION
We study the problem of annotating POIs with geo-tagged tweets.

By exploring the text, coordinates and the user behaviors, we start
with two basic solutions and then propose a supervised Bayesian
model. We further extend the model by integrating external text
sources of POIs, i.e., Foursquare tips, and show by experiment that
our proposed supervised Bayesian model is effective for associat-
ing POI with geo-tagged tweets. The problem and solutions pro-
posed in this paper benefit many applications, including user behav-
iors analysis, POI recommendations, geo-textual data stream pub-
lish/subscription, to name a few. This work opens a few interesting
directions for future work. It would be interesting to investigate
how to annotate POIs with tweets without geo-tagged coordinates.
We also plan to explore how to efficiently annotate a large number
of POIs over tweet stream.
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